精英家教网 > 初中数学 > 题目详情

【题目】列方程解应用题:

门头沟盛产名特果品,东山的京白梨,灵水的核桃,柏峪的扁杏仁,龙泉雾的香白杏,火村红杏,太子墓的红富士苹果,陇驾庄盖柿都是上等的干鲜果品,有的曾为皇宫供品,至今在国内享有盛名.秋收季节,某公司打算到门头沟果园基地购买一批优质苹果.果园基地对购买量在1000千克(含1000千克)以上的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.

(1)公司购买多少千克苹果时,选择两种购买方案的付款费用相同;

(2)如果公司打算购买3000千克苹果,选择哪种方案付款最少?为什么?

【答案】(1)2500千克;(2)选择方案二付款最少理由见解析.

【解析】

(1) 设公司购买x千克苹果时, 根据两种购买方案的付款费用相同得到: 10x=8x+5000, 解方程即可;

(2) 分别求得当x=3000, 分析10x8x+5000的大小关系, 得出不等式的解集可以得出购买方案付款的多少问题.

(1)解:设公司购买x千克苹果时,选择两种购买方案的付款费用相同.

根据题意,得:10x=8x+5000

解得:x=2500.

答:公司购买2500千克苹果时,选择两种购买方案的付款费用相同.

(2)当x=3000时,10x=10×3000=30000(元)

8x+5000=8×3000+5000=29000(元)

30000>29000

∴选择方案二付款最少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正比例函数与反比例函数的图象交于AB两点,A点的横坐标为2AC⊥x轴于点C,连接BC

1)求反比例函数的解析式;

2)若点P是反比例函数图象上的一点,且满足△OPC△ABC的面积相等,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,

(1)求证:四边形AEBD是菱形;
(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂的新运算

定义:am 与 an(a≠0,m、n 都是正整数)叫做同底数幂,同底数幂除法记作 am÷an

运算法则如下:am÷an=

根据“同底数幂除法”的运算法则,回答下列问题

(1)填空: = ,43÷45=

(2)如果 3x-1÷33x-4=求出 x 的值

(3)如果(x﹣1)2x+2÷(x﹣1)x+6=1,请直接写出 x 的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF,AF⊥EF,AC=,则AB的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)由表格中的数据,计算出甲的平均成绩是 环,乙的成绩是 .

(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.

查看答案和解析>>

同步练习册答案