精英家教网 > 初中数学 > 题目详情

【题目】如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF,AF⊥EF,AC=,则AB的长为_____

【答案】2

【解析】连接BD,E、F分别BC、CD的中点,得EF=,AB=x,DF=CF=,由勾股定理得,CE2+CF2=EF2 ,求得,AD=2CE=,再证△ADF∽△FCE,得 ,即,化简可得.

连接BD,

因为,四边形ABCD是矩形,

所以,BD=AC=,

因为,E、F分别BC、CD的中点,

所以,EF=,

AB=x,DF=CF=

由勾股定理得,CE2+CF2=EF2 ,

所以,AD=2CE=

因为,EFAF,

所以,∠AFE=90o

所以,∠AFD+CFE=90o

又因为,∠CEF+CFE=90o

所以,∠AFD=∠CEF

又∠ADF=∠FCE==90o

所以,△ADF∽△FCE

所以,

所以,

解得x=2.

即AB=2.

故答案为:2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?

(2)当标价总额是多少时,甲、乙超市实付款一样?

(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

门头沟盛产名特果品,东山的京白梨,灵水的核桃,柏峪的扁杏仁,龙泉雾的香白杏,火村红杏,太子墓的红富士苹果,陇驾庄盖柿都是上等的干鲜果品,有的曾为皇宫供品,至今在国内享有盛名.秋收季节,某公司打算到门头沟果园基地购买一批优质苹果.果园基地对购买量在1000千克(含1000千克)以上的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.

(1)公司购买多少千克苹果时,选择两种购买方案的付款费用相同;

(2)如果公司打算购买3000千克苹果,选择哪种方案付款最少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB=°,理由是:
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:
(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.
(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,P为边AB上一点.

(1)如图1,若∠ACP=∠B,求证:AC2=APAB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

甲、乙两人同时从相距25千米的A地去B 甲骑车乙步行甲的速度是乙的速度的3倍甲到达B地停留40分钟然后从B地返回A地在途中遇见乙这时距他们出发的时间恰好3小时求两人的速度各是多少?

查看答案和解析>>

同步练习册答案