【题目】如图所示,在中,∠C=90°,∠A=30°.
(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);
(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连接BE,求证:EF=2DE.
【答案】(1)作图见解析;(2)证明见解析.
【解析】试题分析:
(1)分别以点A,B为圆心,以大于AB的一半为半径画圆,两圆交于两点,过这两点画直线,这条直线即是线段AB的垂直平分线;
(2)先证明ED=EC,再证∠F=30°,用含30°角的直角三角形的性质即可证明.
试题解析:
解:(1)如下图所示,直线l即为所求.
(2)证明:在Rt△ABC中,∵∠A=30°,∠ABC=60°,l为线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°,
∴∠EBC=30°=∠EBA,∠FEC=60°.
又∵ED⊥AB,EC⊥BC,∴ED=EC.
在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.
科目:初中数学 来源: 题型:
【题目】阅读资料:我们把顶点在圆上,并且一边和圆相交、另一边和圆相切的角叫做弦切角,如下左图∠ABC所示。
同学们研究发现:P为圆上任意一点,当弦AC经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图甲)
证明:∵AB切⊙O于点A, ∴∠CAB=90°, 又∵AC是直径, ∴∠P=90° ∴∠CAB=∠P
问题拓展:若AC不经过圆心O(如图乙),该结论:弦切角∠CAB=∠P还成立吗?
请说明理由。
知识运用:如图,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F。 求证:EF∥BC。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为( )
A.14×104
B.1.4×105
C.1.4×106
D.14×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图P为等边△ABC外一点,AH垂直平分PC于点H,∠BAP的平分线交PC于点D
(1) 求证:DP=DB
(2) 求证:DA+DB=DC
(3) 若等边△ABC边长为,连接BH,当△BDH为等边三角形时,请直接写出CP的长度为_________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com