精英家教网 > 初中数学 > 题目详情

如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.
(1)求证:AF⊥EF.
(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.

证明:(1)∵EF是⊙O的切线,
∴OD⊥EF,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
=
∴OD⊥BC,
∴BC∥EF,
∵AB为直径,
∴∠ACB=90°,
即AC⊥BC,
∴AF⊥EF;

(2)连接BD并延长,交AF的延长线于点H,连接CD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BH,
∴∠ADB=∠ADH=90°,
在△ABD和△ADH中,

∴△ABD≌△AHD(ASA),
∴AH=AB,
∵EF是切线,
∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,
∴∠EDF=∠HDF,
∵DF⊥AF,DF是公共边,
∴△CDF≌△HDF(ASA),
∴FH=CF,
∴AF+CF=AF+FH=AH=AB.
即AF+CF=AB,
分析:(1)首先连接OD,由EF是⊙O的切线,可得OD⊥EF,由∠BAC的平分线交⊙O与点D,易证得OD⊥BC,即可得BC∥EF,由AB为直径,根据直径所对的圆周角是直角,可得AC⊥BC,继而证得AF⊥EF.
(2)首先连接BD并延长,交AF的延长线于点H,连接CD,易证得△ADH≌△ADB,△CDF≌△HDF,继而证得AF+CF=AB.
点评:此题考查了切线的性质、弦切角定理、圆周角定理以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,OD⊥AB于点D、交⊙O于点E,∠C=60°,如果⊙O的半径为2,那么OD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,AD是△ABC的高,且AD平分∠BAC,请指出∠B与∠C的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔东南州)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.

查看答案和解析>>

同步练习册答案