精英家教网 > 初中数学 > 题目详情

若点(2,m)关于点(-1,0)的对称点是(n,-5),则m-n=________.

9
分析:先根据对称性,得出点(-1,0)是连接两点(2,m)与(n,-5)所连线段的中点,从而求出m,n的值,再代入计算,即可求出m-n的值.
解答:∵点(2,m)关于点(-1,0)的对称点是(n,-5),
=-1,=0,
∴n=-4,m=5,
m-n=5-(-4)=9.
故答案为9.
点评:本题考查点关于点对称的点的坐标问题,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠ACB=90°,BC=6,AC=8,过点A作直线MN⊥AC,点E是直线MN上的一个动点,
(1)如图1,如果点E是射线AM上的一个动点(不与点A重合),连接CE交AB于点P.若AE为x,AP为y,求y关于x的函数解析式,并写出它的定义域;
(2)在射线AM上是否存在一点E,使以点E、A、P组成的三角形与△ABC相似,若存在求AE的长,若不存在,请说明理由;
(3)如图2,过点B作BD⊥MN,垂足为D,以点C为圆心,若以AC为半径的⊙C与以ED为半径的⊙E相切,求⊙E的半径.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读理解:
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(
x1+x2
2
y1+y2
2
)

观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为
 

(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为
 
 

拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=
4
3
x+4
分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒
5
3
个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①若△MPH与矩形AOCD重合部分的面积为1,求t的值;
②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

作一个图形关于一条直线的轴对称图形,再将这个轴对称图形沿着与这条直线平行的方向平移,我们把这样的图形变换叫做关于这条直线的滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1),结合轴对称和平移的有关性质,解答以下问题:精英家教网
(1)如图2,在关于直线l的滑动对称变换中,试证明:两个对应点A,A′的连线被直线l平分;
(2)若点P是正方形ABCD的边AD上的一点,点P关于对角线AC滑动对称变换的对应点P′也在正方形ABCD的边上,请仅用无刻度的直尺在图3中画出P′;
(3)定义:若点M到某条直线的距离为d,将这个点关于这条直线的对称点N沿着与这条直线平行的方向平移到点M′的距离为s,称[d,s]为点M与M′关于这条直线滑动对称变换的特征量.如图4,在平面直角坐标系xOy中,点B是反比例函数y=
3x
的图象在第一象限内的一个动点,点B关于y轴的对称点为C,将点C沿平行于y轴的方向向下平移到点B′.
①若点B(1,3)与B′关于y轴的滑动对称变换的特征量为[m,m+4],判断点B′是否在此函数的图象上,为什么?
②已知点B与B′关于y轴的滑动对称变换的特征量为[d,s],且不论点B如何运动,点B′也都在此函数的图象上,判断s与d是否存在函数关系?如果是,请写出s关于d的函数关系式.

查看答案和解析>>

科目:初中数学 来源:甘肃省中考真题 题型:解答题

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限,动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒。
(1)当P点在边AB上运动时,点Q的横坐标x(单位长度)关于运动时间t(秒)的函数图象如图②所示,请 写出点Q开始运动时的坐标及点P的运动速度;
(2)求正方形的边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由。

查看答案和解析>>

同步练习册答案