精英家教网 > 初中数学 > 题目详情

【题目】某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.

时间x(天)

0

4

8

12

16

20

销量y1(万朵)

0

16

24

24

16

0

另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.

【答案】
(1)解:由图表数据观察可知y1与x之间是二次函数关系,

设y1=ax2+bx+c(a≠0),

解得

故y1与x函数关系式为y1=﹣ x2+5x(0≤x≤20)


(2)解:销售8天后,该花木公司采用了降价促销(或广告宣传)的方法吸引了淘宝买家的注意力,日销量逐渐增加;

当0≤x≤8,设y=kx,

∵函数图象经过点(8,4),

∴8k=4,

解得k=

所以,y= x,

当8<x≤20时,设y=mx+n,

∵函数图象经过点(8,4)、(20,16),

解得

所以,y=x﹣4,

综上,y2=


(3)解:当0≤x≤8时,

y=y1+y2

= x﹣ x2+5x

=﹣ (x2﹣22x+121)+

=﹣ (x﹣11)2+

∵抛物线开口向下,x的取值范围在对称轴左侧,y随x的增大而增大,

∴当x=8时,y有最大值,y最大=﹣ (8﹣11)2+ =28;

当8<x≤20时,y=y1+y2=x﹣4﹣ x2+5x,

=﹣ (x2﹣24x+144)+32,

=﹣ (x﹣12)2+32,

∵抛物线开口向下,顶点在x的取值范围内,

∴当x=12时,y有最大值为32,

∴该花木公司销售第12天,日销售总量最大,最大值为32万朵.


【解析】(1)先判断出y1与x之间是二次函数关系,然后设y1=ax2+bx+c(a≠0),然后取三组数据,利用待定系数法求二次函数解析式解答;(2)销售量增加,从降价促销上考虑,然后分两段利用待定系数法求一次函数解析式解答;(3)分①0≤x≤8时,②8<x≤20时两种情况,根据总销售量y=y1+y2 , 整理后再根据二次函数的最值问题解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=∠D=60°,∠BAC=∠ACD=90°,点E为边AB上一点,AB=3AE=3cm,动点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,设运动时间为t秒.

(1)求证四边形ABCD是平行四边形;
(2)当△BEP为等腰三角形时,求t2﹣31t的值;
(3)当t=4时,把△ABP沿直线AP翻折,得到△AFP,求△AFP与ABCD重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.

求证:(1)ABE≌△CDF;

(2)四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 3个单位/秒的速度向右运动.

(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;

(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h,并且甲车途中休息了0.5 h,如图是甲、乙两车行驶的路程y(km)与时间x(h)的函数图象

(1)求出图中ma的值.

(2)求出甲车行驶的路程y(km)与时间x(h)的函数关系式,并写出相应的x的取值范围.

(3)当乙车行驶多长时间时,两车恰好相距50 km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD=BC,C=D=90°,下列结论中不成立的是( )

A. DAE=CBE B. CE=DE C. DAECBE不一定全等 D. 1=2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin , 且满足 ,则我们称函数y为“三角形函数”.
(1)若函数y=x+a为“三角形函数”,求a的取值范围;
(2)判断函数y=x2 x+1是否为“三角形函数”,并说明理由;
(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.

1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AEEF所在的两个三角形全等,但ABEECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证AEMEFC就行了,随即小强写出了如下的证明过程:

证明:如图1,取AB的中点M,连接EM

∵∠AEF=90°

∴∠FEC+AEB=90°

又∵∠EAM+AEB=90°

∴∠EAM=FEC

∵点EM分别为正方形的边BCAB的中点

AM=EC

又可知BME是等腰直角三角形

∴∠AME=135°

又∵CF是正方形外角的平分线

∴∠ECF=135°

∴△AEM≌△EFCASA

AE=EF

2)探究2:小强继续探索,如图2,若把条件E是边BC的中点改为E是边BC上的任意一点其余条件不变,发现AE=EF仍然成立,请你证明这一结论.

3)探究3:小强进一步还想试试,如图3,若把条件E是边BC的中点改为E是边BC延长线上的一点其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△ABC中,AB=AC,BAC=120°,ADBC于点D,点PBA延长线上一点,点O是线段AD上一点,OP=OC.

(1)求∠APO+∠DCO的度数;

(2)求证:点POC的垂直平分线上.

查看答案和解析>>

同步练习册答案