【题目】某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:
请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?
(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.
【答案】
(1)解:根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),
补全统计图,如图所示:
(2)解:根据题意得:2000× ×100%=560(人),
则估计全校同学中最喜爱“臭豆腐”的同学有560人;
(3)解:列表如下:
A | B | C | D | |
A | (A,A) | (B,A) | (C,A) | (D,A) |
B | (A,B) | (B,B) | (C,B) | (D,B) |
C | (A,C) | (B,C) | (C,C) | (D,C) |
D | (A,D) | (B,D) | (C,D) | (D,D) |
所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,
则P= .
【解析】(1)依据总人数等于各条形频数之和可求得喜欢“唆螺”的人数,然后补全条形统计图即可;
(2)依据百分比=频数÷总数求出喜欢“臭豆腐”的百分比,然后用2000×这个百分比即可;
(3)首先列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,最后,再利用概率公式进行计算即可.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)
(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是 度和 度;
(2)在图2中画2条线段,使图中有4个等腰三角形;
(3)继续按以上操作发现:在△ABC中画n条线段,则图中有 个等腰三角形,其中有 个黄金等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;
(2)若AB=6,求平行四边形BCFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是乐乐设计的智力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,,
(1)若,求的度数;请填空.
解:(1)过点作直线(如图所示).
因为(已知),
所以(平行于同一条直线的两条直线平行).
因为,
( ),
又因为 = 60°(等量代换),
所以 °(等式性质)
(2)直接写出∠B、∠D与∠BFD之间的数量关系. .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用“※”定义一种新运算:对于任意有理数a和b,规定a※b=ab2+2ab+a.
如:1※2=1×22+2×1×2+1=9
(1)(﹣2)※3= ;
(2)若※3=16,求a的值;
(3)若2※x=m,(x)※3=n(其中x为有理数),试比较m,n的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出不完整的频数分布表和频数分布直方图(如图).
组别 | 次数(x) | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a=________;
(2)请把频数分布直方图补充完整;
(3)若规定:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;
(3)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com