精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;

(3)M是抛物线上任意一点,过点My轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.

【答案】(1).点的坐标为,点的坐标为;(2)存在点,使的面积最大,最大面积是.(3)点的坐标为

【解析】

(1)由抛物线的对称轴为直线x=3,利用二次函数的性质即可求出a值,进而可得出抛物线的解析式,再利用二次函数图象上点的坐标特征,即可求出点A、B的坐标;

(2)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,假设存在,设点P的坐标为(x,-x2+x+4),过点PPDy轴,交直线BC于点D,则点D的坐标为(x,-x+4),PD=-x2+2x,利用三角形的面积公式即可得出SPBC关于x的函数关系式,再利用二次函数的性质即可解决最值问题;

(3)设点M的坐标为(m,-m2+m+4),则点N的坐标为(m,-m+4),进而可得出MN=|-m2+2m|,结合MN=3即可得出关于m的含绝对值符号的一元二次方程,解之即可得出结论.

(1)抛物线的对称轴是直线

,解得:

∴抛物线的解析式为

时,

解得:

∴点的坐标为,点的坐标为

(2)时,

∴点的坐标为

设直线的解析式为

代入

,解得:

∴直线的解析式为

假设存在,设点的坐标为,过点轴,交直线于点,则点的坐标为,如图所示.

∴当时,的面积最大,最大面积是

∴存在点,使的面积最大,最大面积是

(3)设点的坐标为,则点的坐标为

又∵

时,有

解得:

∴点的坐标为

时,有

解得:

∴点的坐标为

综上所述:点的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点(3,-2)在反比例函数的图像上,则下列各点中,也在反比例函数图像上的是(

A. (3,-3) B. (-2,3) C. (1,6) D. (-2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点DAE⊥DC,垂足为EFAE与⊙O的交点,AC平分∠BAE,连接OC

(1)求证:DE是⊙O的切线;

(2)若⊙O半径为4,∠D=30°,求图中阴影部分的面积(结果用含π和根号的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,RtABC的三个顶点A(-2,2),B(0,5),C(0,2).

(1)ABC以点C为旋转中心旋转180°,得到A1B1C,请画出A1B1C的图形.

(2)平移ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的A2B2C2的图形.

(3)若将A1B1C绕某一点旋转可得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1   ),B1   ),C1   );

(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.

请根据图中信息解决下列问题:

(1)共有   名同学参与问卷调查;

(2)补全条形统计图和扇形统计图;

(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

每台甲型收割机的租金

每台乙型收割机的租金

A地区

1800

1600

B地区

1600

1200

(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求yx间的函数关系式,并写出x的取值范围;

(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;

(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增加学生的阅读兴趣,学校新购进一批图书.为了解学生对图书类别的喜欢情况,学校随机抽取部分学生进行了问卷调查,规定被调查学生从文学、历史、科学、生活中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.

请根据图表信息,解答下列问题:

1)此次共调查了多少人;

2)通过计算补全条形统计图;

3)若该校共有学生人,请估计这所学校喜欢科学类图书的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是边ADCD上的点,AE=EDDF=DC,连接EF并延长交BC的延长线于点G

(1)求证:ABE∽△DEF

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

同步练习册答案