精英家教网 > 初中数学 > 题目详情

请阅读下列材料:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x.
所以x=数学公式
把x=数学公式代入已知方程,得(数学公式2+数学公式-3=0,化简,得y2+2y-12=0.
故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

解:设所求方程的根为y,则y=3x,
所以x=
把x=代入已知方程,得
)2+-1=0,
化简,得y2+3y-9=0,
故所求方程为y2+3y-9=0.
分析:根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即可得出所求的方程.
点评:本题主要考查了一元二次方程的解.本题是一道材料题,是一种新型问题,解题时,要提取材料中的关键性信息.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

25、请阅读下列材料:
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

11、请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x.
所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-3=0,化简,得y2+2y-12=0.
故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请阅读下列材料:
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:

已知:如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点DE分别为线段BC上两动点,若∠DAE=45°.探究线段BDDEEC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连结E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:

(1)猜想BDDEEC三条线段之间存在的数量关系式,并对你的猜想给予证明;                     

(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

                                                             

 图(2)

查看答案和解析>>

同步练习册答案