精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,数学公式),交x轴于A、B两点,交y轴于点C(0,-数学公式).
(1)求抛物线的表达式.
(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.判断四边形ADBC的形状,并说明理由.
(3)试问在线段AC上是否存在一点F,使得△FBD的周长最小?若存在,请写出点F的坐标;若不存在,请说明理由.

解:(1)由题意知

解得:a=,b=-
∴抛物线的解析式为y=x2-x-

(2)设点A(x1,0),B(x2,0),则y=x2-x-=0,
解得:x1=-1,x2=3,
∴|OA|=1,|OB|=3.又∵tan∠OCB==
∴∠OCB=60°,同理可求∠OCA=30°.
∴∠ACB=90°,
由旋转性质可知AC=BD,BC=AD,
∴四边形ADBC是平行四边形
又∵∠ACB=90°.
∴四边形ADBC是矩形;

(3)答:存在,
延长BC至N,使CN=CB.
假设存在一点F,使△FBD的周长最小.
即FD+FB+DB最小.
∵DB固定长.∴只要FD+FB最小.
又∵CA⊥BN
∴FD+FB=FD+FN.∴当N、F、D在一条直线上时,FD+FB最小.
又∵C为BN的中点,
∴FC=AC(即F为AC的中点).
又∵A(-1,0),C(0,-
∴点F的坐标为F(-,-
答:存在这样的点F(-,-),使得△FBD的周长最小.
分析:(1)抛物线的顶点坐标为(1,),所以-=1,=-,又因为交y轴于点C(0,-),所以c=-,联立以上等式建立方程组求出啊、,b的值即可求抛物线的表达式;
(2)四边形ADBC的形状为矩形,设y=0,即(1)中抛物线的解析式中y=x2-x-=0,求出A、B的坐标,得到E(1,0),即可推出D的坐标,根据矩形的判定即可推出答案;
(3)存在,延长BC至N,使CN=CB.假设存在一点F,使△FBD的周长最小,即FD+FB+DB最小,因为DB固定长,所以只要FD+FB最小即可,再由已知条件和给出的数据求出点F的坐标即可.
点评:本题主要考查对用待定系数法求二次函数的解析式,解一元二次方程,平行四边形的性质,中心对称图形等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案