【题目】如图1,已知A(,0),B(0, )分别为两坐标轴上的点,且、满足,OC∶OA=1∶3.
(1)求A、B、C三点的坐标;
(2)若D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为.当BD平分△BEF的面积时,求的值;
(3)如图2,若M(2,4),点P是轴上A点右侧一动点,AH⊥PM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.
【答案】(1)A(6,0),B(0,6),C(-2,0);(2);(3)不改变.
【解析】试题分析:(1)由偶次方和算术平方根的非负性质求出a和b的值,得出点A、B的坐标,再求出OC,即可得出点C的坐标;
(2)作EG⊥x轴于G,FH⊥x轴于H,由三角形的面积关系得出DF=DE,由AAS证明△FDH≌△EDG,得出DH=DG,即可得出结果;
(3)作MQ⊥x轴于Q,连接CM、AG、M,证出△MCQ是等腰直角三角形,得出∠MCQ=45°,同理:△MPQ是等腰直角三角形,∠MAQ=45°,△AHG是等腰直角三角形,得出∠AGH=45°=∠MCQ,证出A、G、M、C四点共圆,由圆周角定理即可得出结论.
试题解析:(1)∵,
∴a-b=0,b-6=0,
∴a=b=6,
∴A(6,0),B(0,6),
∴OA==OB=6,
∵OC:OA=1:3,
∴OC=2,
∴C(-2,0).
(2)作EG⊥x轴于G,FH⊥x轴于H,如图1所示:
则∠FHD=∠EGD=90°,
∵BD平分△BEF的面积,
∴DF=DE,
在△FDH和△EDG中, ,
∴△FDH≌△EDG(AAS),
∴DH=DG,即xE+1=xF1,
∴xE+xF=2;
(3)∠CGM的度数不改变,∠CGM=45°;
理由如下:作MQ⊥x轴于Q,连接CM、AG、M,如图2所示:
则MQ=4,OQ=2,
∴CQ=2+2=4,
∴△MCQ是等腰直角三角形,
∴∠MCQ=45°,
同理:△MQA是等腰直角三角形,
∴∠MAQ=45°,
∵AH⊥PM,HG=HA,
∴△AHG是等腰直角三角形,
∴∠AGH=45°=∠MCQ,
∴A、G、M、C四点共圆,
∴∠CGM=∠MAQ=45°.
科目:初中数学 来源: 题型:
【题目】阅读材料,解答问题
数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.
小惠说:“如图1,我用相同的两块含 30°角的直角三角板可以画角的平分线.画法如下:
①在 的两边分别取点 M,N,使 OM=ON ;
②把直角三角板按如图所示的位置放置,两斜边交于点 P ;
③作射线 OP .则OP是∠AOB 的平分线.”小旭说:“我只用刻度尺就可以画角平分线.”
请你也参与探讨,解决以下问题:
(1)小惠的作法正确吗?若正确,请给出证明,若不正确,请说明理由.
(2)请你和小旭一样,只用刻度尺画出图 2 中∠QRS 的平分线,并简述画图的过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com