【题目】“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
【答案】(1)小张跑步的平均速度为210米/分钟.(2)小张不能在演唱会开始前赶到奥体中心.
【解析】试题分析:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.
试题解析:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,
根据题意得: =4,解得:x=210,
经检验,x=210是原方程组的解,
答:小张跑步的平均速度为210米/分钟;
(2)小张跑步到家所需时间为2520÷210=12(分钟),
小张骑车所用时间为12﹣4=8(分钟),
小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),
∵25>23,
∴小张不能在演唱会开始前赶到奥体中心.
科目:初中数学 来源: 题型:
【题目】如图1,已知A(,0),B(0, )分别为两坐标轴上的点,且、满足,OC∶OA=1∶3.
(1)求A、B、C三点的坐标;
(2)若D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为.当BD平分△BEF的面积时,求的值;
(3)如图2,若M(2,4),点P是轴上A点右侧一动点,AH⊥PM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程有两个相等的实数根,其中正确的结论是______.(只填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.
(1)求证:AB是⊙O的切线;
(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DGOE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为洪涛同学的小测卷(每小题25分,共100分),他的得分应是______分.
姓名 洪涛 得分?
填空
①2的相反数是 -2 ;
②倒数等于它本身的数是1和-1;
③-1的绝对值是 1 ;
④2的立方是 6 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com