ÏÈÔĶÁÏÂÃæµÄ²ÄÁÏ£¬ÔÙ·Ö½âÒòʽ£º

    Òª°Ñ¶àÏîʽam+an+bm+bn·Ö½âÒòʽ£¬¿ÉÒÔÏÈ°ÑËüµÄÇ°Á½Ïî·Ö³ÉÒ»×飬²¢Ìá³öa£»°ÑËüµÄºóÁ½Ïî·Ö³ÉÒ»×飬²¢Ìá³öb£¬´Ó¶øµÃµ½a£¨m+n£©+b£¨m+n£©£®Õâʱ£¬ÓÉÓÚa£¨m+n£©+b£¨m+n£©ÓÖÓй«Òòʽ£¨m+n£©£¬ÓÚÊÇ¿ÉÌṫÒòʽ£¨m+n£©£¬´Ó¶øµÃµ½£¨m+n£©£¨a+b£©£®Òò´ËÓÐam+an+bm+bn=£¨am+an£©+£¨bm+bn£©=a£¨m+n£©+b£¨m+n£©=£¨m+n£©£¨a+b£©£®

    ÕâÖÖÒòʽ·Ö½âµÄ·½·¨½Ð×ö·Ö×é·Ö½â·¨£®Èç¹û°ÑÒ»¸ö¶àÏîʽµÄÏî·Ö×é²¢Ìá³ö¹«Òòʽºó£¬ËüÃǵÄÁíÒ»¸öÒòʽÕýºÃÏàͬ£¬ÄÇôÕâ¸ö¶àÏîʽ¾Í¿ÉÒÔÀûÓ÷Ö×é·Ö½â·¨À´·Ö½âÒòʽÁË£®

    ÇëÓÃÉÏÃæ²ÄÁÏÖÐÌṩµÄ·½·¨·Ö½âÒòʽ£º

    £¨1£©a2£­ab+ac£­bc£»    £¨2£©m2+5n£­mn£­5m£®

½â£º£¨1£©a2£­ab+ac£­bc=£¨a2£­ab£©+£¨ac£­bc£©

=a£¨a£­b£©+c£¨a£­b£©=£¨a£­b£©£¨a+c£©£®

£¨2£©m2+5n£­mn£­5m=£¨m2£­mn£©+£¨5n£­5m£©

=m£¨m£­n£©+5£¨n£­m£©=m£¨m£­n£©£­5£¨m£­n£©=£¨m£­n£©£¨m£­5£©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÃæµÄ²ÄÁÏ£¬ÔÙ½â´ðÏÂÃæµÄ¸÷Ì⣮
ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÓÐABÁ½µã£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã¼äµÄ¾àÀëÓÃ|AB|±íʾ£¬ÔòÓÐ|AB|=
(x1-x2)2+(y1-y2)2
£¬ÏÂÃæÎÒÃÇÀ´Ö¤Ã÷Õâ¸ö¹«Ê½£ºÖ¤Ã÷£ºÈçͼ1£¬¹ýAµã×÷XÖáµÄ´¹Ïߣ¬´¹×ãΪC£¬ÔòCµãµÄºá×ø±êΪx1£¬¹ýBµã×÷XÖáµÄ´¹Ïߣ¬´¹×ãΪD£¬ÔòDµãµÄºá×ø±êΪx2£¬¹ýAµã×÷BDµÄ´¹Ïߣ¬´¹×ãΪE£¬ÔòEµãµÄºá×ø±êΪx2£¬×Ý×ø±êΪy1£®¡à|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
ÔÚRt¡÷AEBÖУ¬Óɹ´¹É¶¨ÀíµÃ|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
¡à|AB|=
(x1-x2)2+(y1-y2)2
£¨ÒòΪ|AB|±íʾÏ߶㤣¬Îª·Ç¸ºÊý£©
×¢£ºµ±A¡¢BÔÚÆäËüÏóÏÞʱ£¬Í¬Àí¿ÉÖ¤ÉÏÊö¹«Ê½³ÉÁ¢£®
£¨1£©ÔÚƽÃæÖ±½Ç×ø±êϵÖÐÓÐP£¨4£¬6£©¡¢Q£¨2£¬-3£©Á½µã£¬Çó|PQ|£®
£¨2£©Èçͼ2£¬Ö±ÏßL1ÓëL2ÏཻÓÚµãC£¨4£¬6£©£¬L1¡¢L2ÓëXÖá·Ö±ð½»ÓÚB¡¢AÁ½µã£¬Æä×ø±êB£¨8£¬0£©¡¢A£¨1£¬0£©£¬Ö±ÏßL3ƽÐÐÓÚXÖᣬÓëL1¡¢L2·Ö±ð½»ÓÚE¡¢DÁ½µã£¬ÇÒ|DE|=
6
7
£¬ÇóÏ߶Î|DA|µÄ³¤£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÃæµÄ²ÄÁÏ£¬ÔÙ½â´ðºóÃæµÄ¸÷Ì⣺
ÏÖ´úÉç»á¶Ô±£ÃÜÒªÇóÔ½À´Ô½¸ß£¬ÃÜÂëÕýÔڳɣºÎªÈËÃÇÉú»îµÄÒ»²¿·Ö£®ÓÐÒ»ÖÖÃÜÂëµÄÃ÷ÎÄ£¨ÕæʵÎÄ£©°´¼ÆËã»ú¼üÅÌ×ÖĸÅÅÁзֽ⣬ÆäÖÐQ¡¢W¡¢E¡¢¡­¡¢N¡¢MÕâ26¸ö×ÖĸÒÀ´Î¶ÔÓ¦1£¬2£¬3¡­25£¬26Õâ26¸ö×ÔÈ»Êý£¨¼ûÏÂ±í£©£º
Q W E R T Y U I O P A S D
1 2 3 4 5 6 7 8 9 10 11 12 13
F G H J K L Z X C V B N M
14 15 16 17 18 19 20 21 22 23 24 25 26
¸ø³öÒ»¸ö±ä»»¹«Ê½£º
x¡ä=
x
3
(xÊÇ×ÔÈ»Êý£¬1¡Üx¡Ü26£¬x±»3Õû³ý)
x¡ä=
x+2
3
+17(xÊÇ×ÔÈ»Êý£¬1¡Üx¡Ü26£¬x±»3³ýÓà1)
x¡ä=
x+1
3
+8(xÊÇ×ÔÈ»Êý£¬1¡Üx¡Ü26£¬x±»3³ýÓà2)

½«Ã÷ÎÄת»»³ÉÃÜÎÄ£¬È磺4?
4+2
3
+17=19
£¬¼´R±äΪL£®
11?
11+1
3
+8=12
£¬¼´A±äΪS£®
½«ÃÜÎÄת»»³ÉÃ÷ÎÄ£¬È磺21?3¡Á£¨21-17£©-2=10£¬¼´X±äΪP
13?3¡Á£¨13-8£©-1=14£¬¼´D±äΪF£®
£¨1£©°´ÉÏÊö·½·¨½«Ã÷ÎÄNETÒëΪÃÜÎÄ£»
£¨2£©Èô°´ÉÏÊö·½·¨½«Ã÷ÎÄÒë³ÉµÄÃÜÎÄΪDWN£¬ÇëÕÒ³öËüµÄÃ÷ÎÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÃæµÄ²ÄÁÏ£¬ÔÙÒòʽ·Ö½â£º
Òª°Ñ¶àÏîʽam+an+bm+bnÒòʽ·Ö½â£¬¿ÉÒÔÏÈ°ÑËüµÄÇ°Á½Ïî·Ö³ÉÒ»×飬²¢Ìá³öa£»°ÑËüµÄºóÁ½Ïî·Ö³ÉÒ»×飬²¢Ìá³öb£¬´Ó¶øµÃÖÁa£¨m+n£©+b£¨m+n£©£®Õâʱ£¬ÓÉÓÚa£¨m+n£©+b£¨m+n£©£¬ÓÖÓÐÒòʽ£¨m+n£©£¬ÓÚÊÇ¿ÉÌṫÒòʽ£¨m+n£©£¬´Ó¶øµÃµ½£¨m+n£©£¨a+b£©£®Òò´ËÓÐam+an+bm+bn=£¨am+an£©+£¨bm+bn£©=a£¨m+n£©+b£¨m+n£©=£¨m+n£©£¨a+b£©£®ÕâÖÖÒòʽ·Ö½âµÄ·½·¨½Ð×ö·Ö×é·Ö½â·¨£®Èç¹û°ÑÒ»¸ö¶àÏîʽµÄÏî·Ö×é²¢Ìá³ö¹«Òòʽºó£¬ËüÃǵÄÁíÒ»¸öÒòʽÕýºÃÏàͬ£¬ÄÇôÕâ¸ö¶àÏîʽ¾Í¿ÉÒÔÀûÓ÷Ö×é·Ö½â·¨À´Òòʽ·Ö½âÁË£®
ÇëÓÃÉÏÃæ²ÄÁÏÖÐÌṩµÄ·½·¨Òòʽ·Ö½â£º
£¨1£©ab-ac+bc-b2£º
£¨2£©m2-mn+mx-nx£»
£¨3£©xy2-2xy+2y-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºÊ®Ñß ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁÏÂÃæµÄ²ÄÁÏ£¬ÔÙ½â´ðºóÃæµÄ¸÷Ì⣺
ÏÖ´úÉç»á¶Ô±£ÃÜÒªÇóÔ½À´Ô½¸ß£¬ÃÜÂëÕýÔڳɣºÎªÈËÃÇÉú»îµÄÒ»²¿·Ö£®ÓÐÒ»ÖÖÃÜÂëµÄÃ÷ÎÄ£¨ÕæʵÎÄ£©°´¼ÆËã»ú¼üÅÌ×ÖĸÅÅÁзֽ⣬ÆäÖÐQ¡¢W¡¢E¡¢¡­¡¢N¡¢MÕâ26¸ö×ÖĸÒÀ´Î¶ÔÓ¦1£¬2£¬3¡­25£¬26Õâ26¸ö×ÔÈ»Êý£¨¼ûÏÂ±í£©£º
Q W E R T Y U I O P A S D
1 2 3 4 5 6 7 8 9 10 11 12 13
F G H J K L Z X C V B N M
14 15 16 17 18 19 20 21 22 23 24 25 26
¸ø³öÒ»¸ö±ä»»¹«Ê½£º
x¡ä=
x
3
(xÊÇ×ÔÈ»Êý£¬1¡Üx¡Ü26£¬x±»3Õû³ý)
x¡ä=
x+2
3
+17(xÊÇ×ÔÈ»Êý£¬1¡Üx¡Ü26£¬x±»3³ýÓà1)
x¡ä=
x+1
3
+8(xÊÇ×ÔÈ»Êý£¬1¡Üx¡Ü26£¬x±»3³ýÓà2)

½«Ã÷ÎÄת»»³ÉÃÜÎÄ£¬È磺4?
4+2
3
+17=19
£¬¼´R±äΪL£®
11?
11+1
3
+8=12
£¬¼´A±äΪS£®
½«ÃÜÎÄת»»³ÉÃ÷ÎÄ£¬È磺21?3¡Á£¨21-17£©-2=10£¬¼´X±äΪP
13?3¡Á£¨13-8£©-1=14£¬¼´D±äΪF£®
£¨1£©°´ÉÏÊö·½·¨½«Ã÷ÎÄNETÒëΪÃÜÎÄ£»
£¨2£©Èô°´ÉÏÊö·½·¨½«Ã÷ÎÄÒë³ÉµÄÃÜÎÄΪDWN£¬ÇëÕÒ³öËüµÄÃ÷ÎÄ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2003Äêºþ±±Ê¡Ê®ÑßÊÐÖп¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨2003•Ê®Ñߣ©ÏÈÔĶÁÏÂÃæµÄ²ÄÁÏ£¬ÔÙ½â´ðÏÂÃæµÄ¸÷Ì⣮
ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÓÐABÁ½µã£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã¼äµÄ¾àÀëÓÃ|AB|±íʾ£¬ÔòÓÐ|AB|=£¬ÏÂÃæÎÒÃÇÀ´Ö¤Ã÷Õâ¸ö¹«Ê½£ºÖ¤Ã÷£ºÈçͼ1£¬¹ýAµã×÷XÖáµÄ´¹Ïߣ¬´¹×ãΪC£¬ÔòCµãµÄºá×ø±êΪx1£¬¹ýBµã×÷XÖáµÄ´¹Ïߣ¬´¹×ãΪD£¬ÔòDµãµÄºá×ø±êΪx2£¬¹ýAµã×÷BDµÄ´¹Ïߣ¬´¹×ãΪE£¬ÔòEµãµÄºá×ø±êΪx2£¬×Ý×ø±êΪy1£®¡à|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
ÔÚRt¡÷AEBÖУ¬Óɹ´¹É¶¨ÀíµÃ|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
¡à|AB|=£¨ÒòΪ|AB|±íʾÏ߶㤣¬Îª·Ç¸ºÊý£©
×¢£ºµ±A¡¢BÔÚÆäËüÏóÏÞʱ£¬Í¬Àí¿ÉÖ¤ÉÏÊö¹«Ê½³ÉÁ¢£®
£¨1£©ÔÚƽÃæÖ±½Ç×ø±êϵÖÐÓÐP£¨4£¬6£©¡¢Q£¨2£¬-3£©Á½µã£¬Çó|PQ|£®
£¨2£©Èçͼ2£¬Ö±ÏßL1ÓëL2ÏཻÓÚµãC£¨4£¬6£©£¬L1¡¢L2ÓëXÖá·Ö±ð½»ÓÚB¡¢AÁ½µã£¬Æä×ø±êB£¨8£¬0£©¡¢A£¨1£¬0£©£¬Ö±ÏßL3ƽÐÐÓÚXÖᣬÓëL1¡¢L2·Ö±ð½»ÓÚE¡¢DÁ½µã£¬ÇÒ|DE|=£¬ÇóÏ߶Î|DA|µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸