精英家教网 > 初中数学 > 题目详情
精英家教网如图,半圆O的直径AD=12cm,AB,BC,CD分别与半圆O切于点A,E,D.
(1)设AB=x,CD=y,求y与x之间的函数关系式;
(2)如果CD=6,判断四边形ABCD的形状;
(3)如果AB=4,求图中阴影部分的面积.
分析:(1)连接OB,OC;易得OB⊥OC;进而根据勾股定理可得:OB2=OA2+AB2;OC2=OD2+CD2;再根据切线长定理可得:BE、CE与AB、CD的长相等;将上述关系联立可得:(x+y)2=36+x2+36+y2;化简整理可得答案;
(2)若CD=6,根据半圆O的直径AD=12cm;即OE=6;易得四边形ABCD的形状是矩形;
(3)过点B作BF⊥CD于F,易得BA⊥AD.又CD⊥AD,进而可得四边形ABFD是矩形,故CB=CE+EB=13,在Rt△CFB中,得BF=12,故AD=12,故可得半圆与阴影部分的面积.
解答:精英家教网解:(1)连接OB、OE、OC
∵AB,BC分别与半圆O切于点A,E,∴BE=BA,∠OEB=∠OAB=90°
∴△OAB≌△OEB
∴∠EOB=∠AOB
同理,∵BC,CD分别与半圆O切于点E,D
∴△COE≌△COD
∴∠COD=∠COE
∵∠AOB+∠EOB+∠COE+∠COD=180°
∴∠BOE+∠COE=90°
∴OB⊥OC
∵OB2=OA2+AB2=36+x2;OC2=OD2+CD2=36+y2
∵BE=AB=x,CE=CD=y;BC=x+y.
∴(x+y)2=36+x2+36+y2
∴xy=36;
化简可得:y=
36
x


(2)若CD=6,又有半圆O的直径AD=12cm;即OE=6;故OE∥DC∥AB.
则四边形ABCD的形状是矩形;

(3)过点B作BF⊥CD于F,精英家教网
∵BA是半圆O的切线,AD是半圆O的直径,
∴BA⊥AD.
又∵CD⊥AD,
∴四边形ABFD是矩形,
∴BF=AD=12,FD=BA=4.
∴CF=5,
∵CB、BA和CD都是半圆O的切线,
∴CE=CD=9,BE=BA=4.
∴CB=CE+EB=13,
∵S半圆=
1
2
π×62=18π,S梯形ABCD=
1
2
(4+9)•12=78,
∴S=S-S半圆=78-18π
说明:(1)(4分);(2)(3分);(3)(5分).
点评:此题综合考查了反比例函数,正比例函数等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,半圆O的直径AD=12cm,AB、BC、CD分别与半圆O切于点A、E、D.
(1)线段AB、CD与BC之间有什么关系?并说明理由;
(2)设AB=x,CD=y,求y与x之间的函数关系式;
(3)如果AB=4,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,半圆O的直径AB=12cm,射线BM从与线段AB重合的位置起,以每秒6°的旋转速度绕B点按顺时针方向旋转至BP的位置,BP交半圆于E,设旋转时间为ts(0<t<15),
(1)求E点在圆弧上的运动速度(即每秒走过的弧长),结果保留π.
(2)设点C始终为
AE
的中点,过C作CD⊥AB于D,AE交CD、CB分别于G、F,过F作F精英家教网N∥CD,过C作圆的切线交FN于N.
求证:①CN∥AE;
②四边形CGFN为菱形;
③是否存在这样的t值,使BE2=CF•CB?若存在,求t值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,半圆O的直径为6cm,∠BAC=30°,则阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,半圆O的直径AB=20,将半圆O绕点B顺针旋转45°得到半圆O′,与AB交于点P.
(1)求AP的长.
(2)求图中阴影部分的面积(结果保留π).

查看答案和解析>>

同步练习册答案