精英家教网 > 初中数学 > 题目详情
9.如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD的长.(结果精确到0.1米)
(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)

分析 设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=200.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.

解答 解:设PD=x米,
∵PD⊥AB,
∴∠ADP=∠BDP=90°,
在Rt△PAD中,tan∠PAD=$\frac{x}{AD}$,
∴AD=$\frac{x}{tan38.5°}$≈$\frac{x}{0.8}$=$\frac{5}{4}$x,
在Rt△PBD中,tan∠PBD=$\frac{x}{BD}$,
∴DB=$\frac{x}{tan26.5°}$≈$\frac{x}{0.50}$=2x,
又∵AB=80.0米,
∴$\frac{5}{4}$x+2x=200.0,
解得:x≈61.5,即PD≈61.5(米),
∴DB=123.0(米).
答:小桥PD的长度约为61.5米,位于AB之间距B点约123.0米.

点评 本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.计算:
(1)(x+y)2-x(2y-x);
(2)(a+2-$\frac{3a-4}{a-2}$)÷$\frac{{a}^{2}-6a+9}{a-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在△ABC中,BC=AC=4,∠C=90°,在平面内,△ABC绕点A逆时针旋转α,对应得△AB′C′,以B′C′为直径的圆第一次与直线AB相切时.若B′C′中点为O,过O作OH⊥AB交AB′于点G,则S△B′OG=$\frac{8}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,我国某艘海舰船沿正东方向由A向B例行巡航南海部分区域,在航线AB同一水平面上,有三座岛屿C、D、E.船在A处时,测得岛C在A处南偏东15°方向距离A处$\sqrt{2}$a(a>0)海里,岛D在A处南偏东60°方向距离A处a海里,岛E在A处东南方向,当船航行到达B处时,此时测得岛E恰好在船的正南方.
(1)请说明船航行的距离AB正好是岛E离开B处的距离;
(2)若岛D距离B处18海里,求岛C、E之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.设数据:1,2,3,4,5的方差为S12,数据:11,12,13,14,15的方差为S22,则S12=S22.(填:“>”、“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了发展乡村旅游,建设美丽从化,某中学七年级一班同学都积极参加了植树活动,今年四月份该班同学的植树情况部分如图所示,且植树2株的人数占32%.
(1)求该班的总人数、植树株数的众数,并把条形统计图补充完整;
(2)若将该班同学的植树人数所占比例绘制成扇形统计图时,求“植树3株”对应扇形的圆心角的度数;
(3)求从该班参加植树的学生中任意抽取一名,其植树株数超过该班植树株数的平均数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的长度.如图2,在某一时刻,光线与水平面的夹角为72°,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,若1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆AB的长度.(结果精确到0.1米.参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系内,点O为坐标原点,经过点A(-4,4)的抛物线y=$\frac{1}{k}$(x+2)(x+a)交x轴负半轴于点B,交x轴正半轴于点C,交y轴于点D(0,-2).
(1)求a,k的值;
(2)点E是第一象限抛物线上一点,连接EB、EC,若∠BCE-∠EBC=90°,求点E坐标;
(3)在(2)的条件下,连接AE交y轴于点F,连接DE、CF交于点G,横坐标为t的点P为抛物线在第四象限的一动点,连接FP交x轴于点R,点Q在FP上,∠FGQ=∠FRC,过点E作FP的垂线,点H为垂足,当t为何值时,GQ=$\sqrt{2}$FH?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.【问题探究】
已知:如图①所示,∠MPN的顶点为P,⊙O的圆心O从顶点P出发,沿着PN方向平移.

(1)如图②所示,当⊙O分别与射线PM,PN相交于A、B、C、D四个点,连接AC、BD,可以证得△PAC∽△△PDB,从而可以得到:PA•P B=P C•P D.
(2)如图③所示,当⊙O与射线PM相切于点A,与射线PN相交于C、D两个点.求证:PA2=PC•PD.
【简单应用】
(3)如图④所示,(2)中条件不变,经过点P的另一条射线与⊙O相交于E、F两点.利用上述(1),(2)两问的结论,直接写出线段PA与PE、PF之间的数量关系PA2=PE•PF;当PA=4$\sqrt{3}$,EF=2,则PE=6.
【拓展延伸】
(4)如图⑤所示,在以O为圆心的两个同心圆中,A、B是大⊙O上的任意两点,经过A、B 两点作线段,分别交小⊙O于C、E、D、F四个点.求证:AC•AE=BD•BF.(友情提醒:可直接运用本题上面所得到的相关结论)

查看答案和解析>>

同步练习册答案