精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.
(1)求证:FC是⊙O的切线;
(2)若⊙O的半径为5,cos∠ECF= ,求弦AC的长.

【答案】
(1)证明:连接OC.

∵FC=FE(已知),

∴∠FCE=∠FEC(等边对等角);

又∵∠AED=∠FEC(对顶角相等),

∴∠FCE=∠AED(等量代换);

∵OA=OC,

∴∠OAC=∠OCA(等边对等角);

∴∠FCE+∠OCA=∠AED+∠OAC;

∵DF⊥AB,

∴∠ADE=90°,

∴∠FCE+∠OCA=90°,即FC⊥OC,

∴FC是⊙O的切线


(2)解:连接BC.

∵AB是⊙O的直径,⊙O的半径为5,

∴∠ACB=90°(直径所对的圆周角是直角),AB=2OA=10,

∴∠A+∠ABC=90°.

∵DF⊥AB,

∴∠A+∠AED=90°,

∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;

由(1)知,∠AED=∠FEC=∠ECF,

∴BC=ABcos∠ABC=ABcos∠ECF=10× =4,

∴AC= = =2


【解析】(1)连接OC.欲证FC是⊙O的切线,只需证明FC⊥OC即可;(2)连接BC.利用(1)中的∠AED=∠FEC=∠ECF、圆周角定理求得BC=ABcos∠ABC=ABcos∠ECF=10× =4;然后在直角三角形ABC中利用勾股定理求得AC的长度即可.
【考点精析】掌握勾股定理的概念和圆周角定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】关于抛物线y=x2﹣2x+1,下列说法错误的是(  )
A.开口向上
B.与x轴有两个重合的交点
C.对称轴是直线x=1
D.当x>1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣ x+b与抛物线的另一个交点为D.

(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S= a+b﹣1(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:

根据图中提供的信息填表:

格点多边形各边上的格点的个数

格点多边形内部的格点个数

格点多边形的面积

多边形1

8

1

多边形2

7

3

一般格点多边形

a

b

S

则S与a、b之间的关系为S=(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算: ﹣4sin45°+(﹣2012)0
(2)化简: ÷(x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1).

(1)求证:AM=AN;
(2)设BP=x.
①若BM= ,求x的值;
②求四边形ADPE与△ABC重叠部分的面积S与x之间的函数关系式以及S的最小值;
③连接DE分别与边AB、AC交于点G、H(如图2).当x为何值时,∠BAD=15°?此时,以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,﹣2,3,﹣4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.
(1)共有种可能的结果.
(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为(  )
A.
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,已知AD>AB.

(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.

查看答案和解析>>

同步练习册答案