精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小贝同学证明CD∥EF的推理过程或理由,请你在横线上补充完整其推理过程或理由.
证明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°()∴∠ABD+∠CDB=180°.
∴AB∥()(
∵∠A=∠FEC(已知)
∴AB∥()(
∴CD∥EF(

【答案】垂直定义;CD;同旁内角互补,两直线平行;EF;同位角相等,两直线平行;平行于同一条直线的两直线平行
【解析】证明:∵AB⊥BD,CD⊥BD(已知),
∴∠ABD=∠CDB=90°(垂直定义),
∴∠ABD+∠CDB=180°.
∴AB∥CD(同旁内角互补,两直线平行),
∵∠A=∠FEC(已知),
∴AB∥EF(同位角相等,两直线平行),
∴CD∥EF(平行于同一条直线的两条直线平行).
所以答案是:垂直定义;CD;同旁内角互补,两直线平行;EF;同位角相等,两直线平行;平行于同一条直线的两直线平行.
【考点精析】关于本题考查的平行线的判定与性质,需要了解由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.
(1)如果点P到点A,点B的距离相等,那么x=
(2)当x=时,点P到点A,点B的距离之和是6;
(3)若点P到点A,点B的距离之和最小,则x的取值范围是
(4)在数轴上,点M,N表示的数分别为x1 , x2 , 我们把x1 , x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种运动鞋每双按成本价提高25%后标价,后因处理库存每双按标价的9折出售,若毎双鞋的出售价是90元,则每双鞋的成本价是元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为(
A.4
B.﹣4
C.16
D.﹣16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=2x+1经过点(0,a),则a=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=(1m)xm2,当m________时,yx的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度;

(2)当△DEG与△ACB相似时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A. x2+x2x4B. 2x3x3x3C. x2x3x6D. (x2)3x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在实数|3|,﹣201中最小的数是(  )

A. |3|B. 1C. 0D. 2

查看答案和解析>>

同步练习册答案