精英家教网 > 初中数学 > 题目详情

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?

(2)将图1中的三角板绕点O顺时针旋转图2,使ON在AOC的内部,请探究:AOMNOC之间的数量关系,并说明理由.

【答案】16、15、24、33.2AOMNOC=30°理由见解析

【解析】

试题分析:(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;

(2)根据三角板MON=90°可求出AOMNOCAON的关系,然后两角相加即可求出二者之间的数量关系.

解:(1)三角板绕点O按每秒10°的速度沿逆时针方向旋转,

第t秒时,三角板转过的角度为10°t,

当三角板转到如图①所示时,AON=CON

∵∠AON=90°+10°tCON=BOC+BON=120°+90°﹣10°t=210°﹣10°t

90°+10°t=210°﹣10°t

即t=6;

当三角板转到如图②所示时,AOC=CON=180°﹣120°=60°

∵∠CON=BOCBON=120°﹣(10°t﹣90°)=210°﹣10°t

210°﹣10°t=60°

即t=15;

当三角板转到如图③所示时,AON=CON=

∵∠CON=BONBOC=(10°t﹣90°)﹣120°=10°t﹣210°

10°t﹣210°=30°

即t=24;

当三角板转到如图④所示时,AON=AOC=60°

∵∠AON=10°t﹣180°﹣90°=10°t﹣270°

10°t﹣270°=60°

即t=33.

故t的值为6、15、24、33.

(2)∵∠MON=90°AOC=60°

∴∠AOM=90°AONNOC=60°AON

∴∠AOMNOC=(90°﹣AON)﹣(60°﹣AON)=30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图正六边形A1B1C1D1E1F1的边长为2正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切按这样的规律进行下去A10B10C10D10E10F10的边长为( )

A B C D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.从下列四个条件:①BC=B′C,②AC=A′C,③A′CA=B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半,这样的图形有( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.

(1)求A、B两种礼盒的单价分别是多少元?

(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?

(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB3个单位长度/秒的速度向右匀速运动,同时线段CD1个单位长度/秒的速度向左匀速运动.

1问运动多少秒时BC=2(单位长度)?

2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?

3P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,已知C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动点E不与点A、C重合,且保持AE=CF,连接DE、DF、EF在此运动变化的过程中,有下列结论:

四边形CEDF有可能成为正方形

②△DFE是等腰直角三角形

四边形CEDF的面积是定值

点C到线段EF的最大距离为

其中正确的结论是( )

A.①④ B②③ C①②④ D①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,BC=6,AC=4.点P、Q分别从点A、B同时出发,点P沿A→C的方向以每秒1个单位长的速度向点C运动,点Q沿B→C的方向以每秒2个单位长的速度向点C运动.当其中一个点先到达点C时,点P、Q停止运动当四边形ABQP的面积是△ABC面积的一半时,求点P运动的时间

查看答案和解析>>

同步练习册答案