精英家教网 > 初中数学 > 题目详情

【题目】如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半,这样的图形有( ).

A. B. C. D.

【答案】C

【解析】如下图设正方形边长为

1在图中,AB= ∴∠ACB=30°

∴△ECB不满足它的一条直角边等于斜边的一半

2在图中,

∴由折叠的性质可得

∴△ADC的一条直角边等于斜边的一半

3在图中,

∴△BDC不能满足它的一条直角边等于斜边的一半

4在图中,

∴由折叠的性质可得

∴△ABC的一条直角边等于斜边的一半.

综上可得有个图形中能得到一个直角三角形,且满足条件一条直角边是斜边的一半

故选

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABC中,∠B <C,AD,AE分别是ABC的高和角平分线。

(1)若∠B=30°,C=50°,试确定∠DAE的度数;

(2)试写出∠DAE,B,C的数量关系,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点ABC在小正方形的顶点上.

1)在图中画出与关于直线成轴对称的△A′B′C′

2)线段CC′被直线      

3△ABC的面积为      

4)在直线上找一点P,使PB+PC的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,AD是角平分线B=54°,C=76°.

(1)求∠ADB和∠ADC的度数

(2)DEAC,求∠EDC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,D、E△ABCBC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?

(2)将图1中的三角板绕点O顺时针旋转图2,使ON在AOC的内部,请探究:AOMNOC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正方形ABCD对角线BD上一点,PEDCPFBCEF分别为垂足.

1)求证:APD≌△CPD

2)若CF=3CE=4,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O直径AB和弦CD相交于点EAE=2,EB=6,DEB=30°,求弦CD长.

查看答案和解析>>

同步练习册答案