精英家教网 > 初中数学 > 题目详情
19.若一次函数y=kx+b的图象经过点P(-2,3),则2k-b的值为(  )
A.2B.-2C.3D.-3

分析 直接把点(-2,3)代入一次函数y=kx+b,求出k,b的关系即可.

解答 解:把点(-2,3)代入一次函数y=kx+b,可得:3=-2k+b,
所以2k-b=-3,
故选D

点评 本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.已知点A(1,3)在函数y=2x+b的图象上,则b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知点(-4,y1)(1,y2)都在直线y=$\frac{2}{3}$x-4上,则y1与y2的大小关系是(  )
A.y1>y2B.y1<y2C.y1=y2D.不能比较

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)若点P在线段AC上移动,其它不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.计算:$\frac{4}{{x}^{2}-4}$-$\frac{1}{x-2}$的正确结果是(  )
A.-$\frac{1}{x+2}$B.1-xC.1D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将△ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tan∠ABD=$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.在数学课上,老师提出如下问题:
如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
小明的折叠方法如下:
如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D; (2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
老师说:“小明的作法正确.”
请回答:小明这样折叠的依据是CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知:直线y=kx+b平行于直线y=-3x+4且与y轴交于点(0,-5),则此函数的解析式为y=-3x-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,梯形ABCD,AB∥CD,以AC、AD为边向外作?ACED,联结BE,点F是BE的中点,联结CF.求证:CF∥AB.

查看答案和解析>>

同步练习册答案