分析 首先证明四边形ABEF是菱形,得出AE⊥BF,OB=OF=6,OA=OE,利用勾股定理计算出AO,从而得到AE的长.
解答 解:连结EF,AE与BF交于点O,如图,![]()
∵AO平分∠BAD,
∴∠1=∠2,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
同理:AF=BE,
又∵AF∥BE,
∴四边形ABEF是平行四边形,
∴四边形ABEF是菱形,
∴AE⊥BF,OB=OF=6,OA=OE,
在Rt△AOB中,由勾股定理得:OA=$\sqrt{A{B}^{2}-O{B}^{2}}$=$\sqrt{1{0}^{2}{-6}^{2}}$=8,
∴AE=2OA=16.
故答案为:16.
点评 本题考查了平行四边形的性质、菱形的判定与性质、等腰三角形的判定、勾股定理;熟练掌握平行四边形的性质,证明四边形ABEF为菱形是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 7或8 | B. | 6或10 | C. | 6或7 | D. | 7或10 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y1<0<y2 | B. | y2<0<y1 | C. | y1<y2<0 | D. | y2<y1<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3$\sqrt{5}$ | B. | 3$\sqrt{3}$ | C. | 3$\sqrt{3}$+3 | D. | 3$\sqrt{5}$+3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com