精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,A点在B点左侧.若点E在x轴上,点P在抛物线上,且以A、C、E、P为顶点的四边形是平行四边形,则符合条件的点P有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:由于以A、C、E、P为顶点的平行四边形并没有明确边和对角线,所以要分两种情况讨论:
①以AC为边,那么EP∥AC,且EP=AC;
②以AC为对角线,那么AE必与CP平行,因此CP∥x轴;
根据上述两种情况,通过画图可找出符合条件的点P的个数.
解答:①以AC为边时,EPAC,共两种情况,如图①;
②以AC为对角线时,AE∥CP,由于点E在x轴上,因此CP∥x轴,过点C作x轴的平行线,与抛物线的交点也符合点P的条件,如图②;

综上,共有三个符合条件的P点,故选C.
点评:在不明确平行四边形四顶点的排序顺序时,一定需要进行分类讨论,由于题目是选择题,因此只需根据平行四边形的特点,通过作图找出符合条件的P点的个数即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案