精英家教网 > 初中数学 > 题目详情

【题目】中,边上的动点,连结.

1)如图,若,求的长;

2)如图,若的中点,把绕点顺时针旋转度()后得到,连结,点中点.求证:是等边三角形.

【答案】(1)(2)证明见解析.

【解析】

1)证明ADC∽△BAC,通过比例式进行求解;

2)连接BEDFCF,根据三角函数得出∠CAD=BAD=60°,先后证明BAE≌△FADEBG≌△DFG,利用等边三角形的判定方法说明DEG是等边三角形.

(1)如图1,在中,

.

.

.

.

(2)如图2,连结

的中点,

.

.

.

∵把绕点顺时针旋转后得到

.

.

又∵

.

.

又∵

.

.

.

.

又∵

.

是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正三角形ABC的边长是2,分别以点BC为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r2时,S的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是⊙O的内接四边形,∠DAB120°BCCDAD4AC7,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:RtABC中,∠ACB90°,ACBC

1)如图1,点DBC边上一点(不与点BC重合),连接AD,过点BBEAD,交AD的延长线于点E,连接CE.若∠BADα,求∠DBE的大小(用含α的式子表示);

2)如图2,点D在线段BC的延长线上时,连接AD,过点BBEAD,垂足E在线段AD上,连接CE

依题意补全图2

用等式表示线段EAEBEC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】茗阳阁位于河南省信阳市狮河区茶韵路一号,建成于2007429日.是一栋由多种中国建筑元素,由雕栏飞檐、勾心斗角、斗拱图腾等多种形式的中国古代建筑元素汇聚而成,具有浓郁地方古建筑特色的塔式阁楼.茗阳阁是信阳新建的城市文化与形象的代表建筑之一,同时茗阳阁旁的风景也是优美至极.某数学课外兴趣小组为了测量建在山丘上的茗阳阁的高度,在山脚下的广场上处测得建筑物点(即山顶)的仰角为20°,沿水平方向前进20米到达点,测得建筑物顶部点的仰角为45°,已知山丘37.69米.求塔的高度.(结果精确到1米,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4AD=6EAB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB' F,连接B' D,则B' D的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:

1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.

2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与BC重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC

问题解决:

3)如图③,某学校有一块两直角边长分别为30m60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使PABC三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.

(1)求y与x的函数关系式,并直接写出自变量x的取值范围;

(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?

(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字”、“”、“”、“的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.

(1)若从中任取一个球,球上的汉字刚好是的概率为__________.

(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成历城的概率.

查看答案和解析>>

同步练习册答案