【题目】观察下列算式:
①;
②
③ ……
(1)请你按照三个算式的规律写出第④个算式: ,第⑤个算式: ;
(2)试写出第个算式,并证明之.
科目:初中数学 来源: 题型:
【题目】如图所示,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的大小;
(2)若CD=3,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c为x轴的一交点为A(﹣6,0),与y轴的交点为C(0,3),且经过点G(﹣2,3).
(1)求抛物线的表达式.
(2)点P是线段OA上一动点,过P作平行于y轴的直线与AC交于点Q,设△CPQ的面积为S,求S的最大值.
(3)若点B是抛物线与x轴的另一定点,点D、M在线段AB上,点N在线段AC上,∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请你阅读下列计算过程,再回答所提出的问题:
题目计算
解:原式= (A)
= (B)
=x-3-3(x+1) (C)
=-2x-6 (D)
(1)上述计算过程中,从哪一步开始出现错误:_______________
(2)如果假设基于之前步骤正确的前提下,从B到C是否正确,若不正确,错误的原因是____________________________________________________
(3)请你正确解答。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一段圆柱体的树干的示意图,已知树干的半径r=10cm,AD=45cm. (π值取3)
(1)若螳螂在点A处,蝉在点C处,图1中画出了螳螂捕蝉的两条路线,即A→D→C和A→C,图2是该圆柱体的侧面展开图,判断哪条路的距离较短,并说明理由;
(2)若螳螂在点A处,蝉在点D处,螳螂想要捕到这只蝉,但又怕蝉发现,于是螳螂绕到
后方去捕捉它,如图3所示,求螳螂爬行的最短距离;(提示: =75)
(3)图4是该圆柱体的侧面展开图,蝉N在半径为10cm的⊙O的圆上运动,⊙O与BC相切,点O到CD的距离为20cm,螳螂M在线段AD运动上,连接MN,MN即为螳螂捕蝉时螳螂爬行的距离,若要使MN与⊙O总是相切,求MN的长度范围.
图1 图2 图3 图4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com