【题目】如图,已知∠1=∠2,∠B=∠C.
求证:
(1)AB∥CD
(2)∠AEC=∠3.
【答案】
(1)证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=∠4(等量替换),
∴CE∥BF(同位角相等,两直线平行),
∴∠3=∠C(两直线平行,同位角相等).
又∵∠B=∠C(已知),
∴∠3=∠B(等量替换),
∴AB∥CD(内错角相等,两直线平行).
(2)证明:∵AB∥CD(已知),
∴∠AEC=∠C(两直线平行,内错角相等).
∵∠B=∠C=∠3(已知),
∴∠AEC=∠3(等量替换).
【解析】(1)由∠1=∠2结合对顶角相等即可得出∠2=∠4,进而可证出CE∥BF,再根据平行线的性质可得出∠3=∠C=∠B,利用平行线的判定定理即可证出AB∥CD;(2)由AB∥CD可得出∠AEC=∠C,结合∠B=∠C=∠3可得出∠AEC=∠3,此题得证.
【考点精析】利用平行线的判定与性质对题目进行判断即可得到答案,需要熟知由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.
科目:初中数学 来源: 题型:
【题目】如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.
(1)当t=2时,P,Q两点对应的有理数分别是 , , PQ=;
(2)当PQ=10时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC<BC,点D在AC的延长线上,点E在BC边上,且BE=AD,
(1) 如图1,连接AE,DE,当∠AEB=110°时,求∠DAE的度数;
(2) 在图2中,点D是AC延长线上的一个动点,点E在BC边上(不与点C重合),且BE=AD,连接AE,DE,将线段AE绕点E顺时针旋转90°得到线段EF,连接BF,DE.
①依题意补全图形;
②求证:BF=DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.
(1)求证:四边形ADBE是矩形;
(2)连接DE,交AB于点O,若BC=8,AO=,求cos∠AED的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形;
(2)如图1,求AF的长;
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、C、P、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度,若不可能,请说明理由;
②若点Q的速度为每秒0.8cm,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P在第二象限,若该点到x轴的距离为3,到y轴的距离为1,则点P的坐标是( )
A.(﹣1,3)
B.(﹣3,1)
C.(3,﹣1)
D.(1,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列方程变形属于移项的是( )
A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1
B.由﹣3x=﹣6,得x=2
C.由 y=2,得y=10
D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的个数为( )
①过一点有无数条直线与已知直线平行;
②经过直线外一点有且只有一条直线与已知直线平行;
③如果两条线段不相交,那么它们就平行;
④如果两条直线不相交,那么它们就平行.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com