精英家教网 > 初中数学 > 题目详情
13.如图,矩形ABCD中,动点P从点A出发,沿线段AB以每秒2cm的速度向点B运动:同时动点Q从点B出发,沿线段BC以每秒1cm的速度向点C运动.当点P到达B点时,点Q同时停止,设运动时间为t秒.已知AD=6,且t=2时,PQ=2$\sqrt{5}$.
(1)AB=8;
(2)连接DQ并延长交AB的延长线于点E,把DE沿DC翻折交BC延长线于点F,连接EF.
①当DP⊥DF时,求t的值;
②试证明,在运动过程中,△DEF的面积是定值.

分析 (1)根据勾股定理得出PB的长,再得出AP的长,进而得出AB的长度即可;
(2)①首先证明△ADP∽△CDF,根据相似三角形的性质可得$\frac{AD}{CD}=\frac{AP}{CF}$,进而得到$\frac{6}{8}=\frac{2t}{6-t}$,解出t即可;
②由△EBQ∽△EAD,得$\frac{BE}{AE}=\frac{BQ}{AD}$,进而得到BE=$\frac{8t}{6-t}$,再根据三角形的面积公式进行计算即可.

解答 解:(1)∵AD=6,且t=2时,PQ=2$\sqrt{5}$,
∵动点P从点A出发,沿线段AB以每秒2cm的速度向点B运动:同时动点Q从点B出发,沿线段BC以每秒1cm的速度向点C运动,
∴AP=2×2=4,BQ=2×1=2,
∴在Rt△BPQ中,BP=$\sqrt{P{Q}^{2}-B{Q}^{2}}=\sqrt{(2\sqrt{5})^{2}-{2}^{2}}=4$,
∴AB=AP+PB=4+4=8,
故答案为:8;
(2)①∵四边形ABCD是矩形,
∴∠A=∠ADC=∠ABC=∠BCD=90°,
∵DP⊥DF,
∴∠ADP=∠CDF,
∴△ADP∽△CDF,
∴$\frac{AD}{CD}=\frac{AP}{CF}$,
∵AD=6,AP=2t,CD=8,CF=CQ=6-t,
∴$\frac{6}{8}=\frac{2t}{6-t}$,
解得t=$\frac{18}{11}$;
②定值,理由如下:
∵△EBQ∽△EAD,
∴$\frac{BE}{AE}=\frac{BQ}{AD}$,即$\frac{BE}{BE+8}=\frac{t}{6}$,
解得BE=$\frac{8t}{6-t}$,
∴△DEF的面积=$\frac{1}{2}$×QF×(DC+BE)=$\frac{1}{2}$×2(6-t)×(8+$\frac{8t}{6-t}$)=48,
∴△DEF的面积为48.

点评 此题主要考查了相似三角形的判定与性质,关键是掌握证明三角形相似的方法和相似三角形的性质,再利用三角形的面积公式进行计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.9的平方根是(  )
A.3B.±3C.±$\sqrt{3}$D.±81

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若方程组$\left\{\begin{array}{l}{2x+y=k+1}\\{x+2y=3}\end{array}\right.$的解x,y满足0<x+y<1,则k的取值范围是(  )
A.-1<k<0B.-4<k<-1C.0<k<1D.k>-4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ的最小值为(  )
A.6B.8C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知矩形(即小学学过的长方形)ABCD中,AD=6cm,AB=4cm,点E为AD的中点.
(1)若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;
②若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为S cm2,请用t的代数式表示S;
③若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AEP与△BPQ全等?
(2)若点Q以③中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿矩形ABCD的四条边运动,求经过多长时间点P与点Q第一次在矩形ABCD的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:$\frac{DF}{FC}=\frac{DE}{EP}$,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值.
(1)请按照小明的思路写出求解过程.
(2)小东又对此题作了进一步探究,得出了DP=MN的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在体育测试时,初三(2)班的高个子张成同学推铅球,已知铅球所经过的路线是抛物线y=ax2+bx+c的一部分(如图所示),且知铅球出手处A点的坐标为(0,2)(单位:m,后同),铅球路线中最高处B点的坐标为(6,5)
(1)求该抛物线的解析式;
(2)张成同学把铅球推出多远?(精确到0.01m)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在△ABC中,∠BAC=90°,AB=AC,P是BC边上一点,作∠BPE=$\frac{1}{2}$∠BCA,交AB于点E,过点B作BD⊥PE,垂足为D,交CA的延长线于点F,当点P与点C重合时,如图①,易证PE=2BD.
(1)当点P的位置如图②时,线段PE,BD之间有怎样的数量关系?写出你的猜想,并给予证明;
(2)若把条件“AB=AC”改为AB=mAC,其他条件不变,如图③,线段PE,BD之间又有怎样的数量关系?直接写出你的 猜想(用含m的式子表示),不必证明.

查看答案和解析>>

同步练习册答案