精英家教网 > 初中数学 > 题目详情

【题目】如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为(  )

A.90°
B.120°
C.135°
D.150°

【答案】B
【解析】解:∵圆锥的底面半径为3,
∴圆锥的底面周长为6π,
∵圆锥的高是6 ,∴圆锥的母线长为 =9,
设扇形的圆心角为n°,
=6π,
解得n=120.
答:圆锥的侧面展开图中扇形的圆心角为120°.
故选B.
根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点,观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2;即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
艾斯柯同学类比以上知识的研究方法,用函数与方程的思想对不等式的解法进行了探究,请将他下面的②③④补充完整:
①当x=0时,原不等式不成立:当x>0时,原不等式可以转化为x2+4x﹣1> ;当x<0时,原不等式可以转化为x2+4x﹣1<
②构造函数,画出图象
设y3=x2+4x﹣1,y4= 在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中直接画出抛物线y3=x2+4x﹣1(可不列表);

③利用图象,确定交点横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
④借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面上,Rt△ABC与直径为CE的半圆O,如图1摆放,∠B=90°,BC=m,AC=2CE=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转,且∠ECD=∠ACB,旋转角记为α(0°≤α≤180°).
(1)①当α=0°时,连接DE,则∠CDE=°,CD=;②当α=180°时, =
(2)试判断:旋转过程中 的大小有无变化?请仅就图2的情形给出证明.
(3)若m=4,n=5,当α=∠ACB时,线段BD=
(4)若m=4 ,n=6,当半圆O旋转至与△ABC的边相切时,线段BD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.

(1)a= 时,求抛物线的解析式和BC的长;
(2)如图a>1时,若AP⊥PC,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,

求证:四边形ABCD是四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是直角边长为2a的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为(  )

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的一元二次方程x2﹣6x﹣m=0有两个实数根.
(1)求m的取值范围;
(2)如果m取符合条件的最小整数,且一元二次方程x2﹣6x﹣m=0与x2+nx+1=0有一个相同的根,求常数n的值.

查看答案和解析>>

同步练习册答案