精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=+bx+c与一次函数y=kx﹣3的图象都经过x轴上的点A(4,0)和y轴上点C(0,﹣3).

(1)直接写出b,c,k的值,b=  ,c=  ,k=  

(2)二次函数与x轴的另一个交点为B,点M(m,0)在线段AB上运动,过点Mx轴的垂线交直线AC于点D;交抛物线于点P.

是否存在实数m,使△PCD为直角三角形.若存在、求出m的值;若不存在,请说明理由;

0<m<4时,过D作直线AC的垂线交x轴于点Q,求PD+DQ的最大值.

【答案】(1),﹣3;;(2)①存在,m的值为2或﹣;②

【解析】

(1)根据点A、B在二次函数 的图象上,列方程组即可求出b、c的值,把点A代入y=kx﹣3求出k的值即可.(2)①由点M坐标为(m,0)可知点 D、P的坐标分别为D(m, m﹣3),P(m,m2m﹣3),当∠DPC=90°时,CPPD,则m2m﹣3=﹣3,解方程得m=0(舍去)或m=2,当∠PCD=90°,CPCD,

直线PCx轴于N,如图2,可证明△AMD∽△AOC,OC2=ONOA,所以 ON= 可知点N坐标为(﹣,0),得直线CN的解析式为y=﹣x﹣3,列方程组求出P点坐标,即可得m的值.,②由可知OC=3,OA=4,AC=5,因为DMOC,所以△AMD∽△AOC,得 ,AM=4-m,所以AD= -m+5,由DQAC,可证明△ADQ∽△AOC,所以 ,得DQ=﹣m+,因为DP=m﹣3﹣(m2m﹣3),=﹣m2+m,所以PQ+DQ=+

m=时,PQ+DQ有最大值

1)把A(4,0),C(0,﹣3)代入y= +bx+c解得

∴抛物线解析式为y= x﹣3;

A(4,0)代入y=kx﹣34k﹣3=0,解得k=

直线AC的解析式为y=x﹣3;

故答案为﹣,﹣3;

(2)①存在.

M(m,0),则D(m, m﹣3),P(m,m2m﹣3),

当∠DPC=90°时,CPPD,则m2m﹣3=﹣3,解得,m1=0(舍去),m2=2;

当∠PCD=90°,CPCD,

直线PCx轴于N,如图2,

易得△CON∽△AOC,

OC2=ONOA,

ON=,则N(﹣,0),

易得直线CN的解析式为y=﹣ x﹣3,

解方程组 ,则P(﹣,﹣ ),

综上所述,m的值为2或﹣

M(m,0),则D(m, m﹣3),P(m,m2m﹣3),

OC=3,OA=4,

AC=5,

DMOC,

∴△AMD∽△AOC,

,即 ,解得AD=﹣m+5,

DQAC,

∴△ADQ∽△AOC,

,即= ,解得DQ=﹣m+

DP=m﹣3﹣(m2m﹣3)=﹣m2+m,

DP+DQ=﹣m2+m﹣m+=﹣m2+m+=﹣(m﹣2+

m=时,PD+DQ有最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知中,,点的中点,如果点在线段上以的速度由点点运动,同时,点在线段上由点点以的速度运动.经过( )秒后,全等.

A.2B.3C.23D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大刚在晚上由灯柱A走向灯柱B,当他走到M点时,发觉他身后影子的顶部刚好接触到灯柱A的底部,当他向前再走12米到N点时,发觉他身前的影子刚好接触到灯柱B的底部,已知大刚的身高是1.6米,两根灯柱的高度都是9.6米,设AM=NB=x米.求:两根灯柱之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC, ACB=90,AC=BC, 直线MN经过点C,ADMN,BEMN,垂足分别为D,E.

(1) 若直线MN在图①位置时,猜想AD,BE,DE三条线段具有怎样的数量关系?并且给出证明.

(2) 当直线MN在图②位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,给出新的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACAB的垂直平分线MNAC于点D,交AB于点E

1)若∠A40°,求∠DBC的度数;

2)若AE6,△CBD的周长为20,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(0,2),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为(  )

A. (2,4) B. (2,3) C. (3,4) D. (3,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,

(1)观察上面每个正多边形中的∠α,填写下表:

正多边形边数

3

4

5

6

……

n

α的度数

______°

_____°

______°

______°

……

_____°

(2)根据规律,计算正八边形中的∠α的度数.

(3)是否存在正n边形使得∠α=21°?若存在,请求出n的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,垂足分别为,求的长.

1)请你也独立完成这道题:

2)待同学们完成这道题后,张老师又出示了一道题:

在课本原题其它条件不变的前提下,将所在直线旋转到的外部(如图2),请你猜想三者之间的数量关系,直接写出结论:_______.(不需证明)

3)如图3,将(1)中的条件改为:在中,三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=,其中为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

同步练习册答案