【题目】如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点以的速度运动.经过( )秒后,与全等.
A.2B.3C.2或3D.无法确定
【答案】A
【解析】
经过2秒后,PB=4cm,PC=6cm,CQ=4cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.
解:△BPD≌△CQP,理由如下:
当P,Q两点分别从B,A两点同时出发运动2秒时,
有BP=2×2=4cm,AQ=4×2=8cm,
则CP=BC-BP=10-4=6cm,CQ=AC-AQ=12-8=4cm.
∵D是AB的中点,
∴BD=AB=×12=6cm,
∴BP=CQ,BD=CP,
又∵△ABC中,AB=AC,
∴∠B=∠C.
在△BPD和△CQP中,
BP=CQ,∠B=∠C,BD=CP,
∴△BPD≌△CQP(SAS).
故选A.
科目:初中数学 来源: 题型:
【题目】已知:如图①,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D,且AB=5,AD=4,在AD上取一点G,使AG=,点P是折线CB﹣BA上一动点,以PG为直径作⊙O交AC于点E,连结PE.
(1)求sinC的值;
(2)当点P与点B重合时如图②所示,⊙O交边AB于点F,求证:∠EPG=∠FPG;
(3)点P在整个运动过程中:
①当BC或AB与⊙O相切时,求所有满足条件的DE长;
②点P以圆心O为旋转中心,顺时针方向旋转90°得到P′,当P′恰好落在AB边上时,求△OPP′与△OGE的面积之比(请直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为______;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为_______.
(2)利用(1)中求不等式解集的步骤,求不等式x2﹣2x+1≥4的解集.
①构造界点,画出图象;
②求得界点,标志所需;
③借助图象,写出解集
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示是一个用四根木条钉成的作图工具,其中,,两根木条的连接处是可以转动的,几名同学在一起讨论这个工具的用途.
(1)小明发现用这个工具可以快速作出角平分线在下面的几种用法中,能作出的平分线的有_______.(写出所有正确的序号)
①是的平分线; ②是的平分线; ③是的平分线
(2)对于这个工具的其它用途,小兰发现可以用它作线段的垂直平分线.
请结合图2补全结论并给出证明.
已知:如图2,,.
求证:________垂直平分__________.
(3)对于这个工具的其它用途,小红认为通过多次操作可以用它作平行线.你同意吗?如果同意,请画示意图说明如何操作;如果不同意,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知,求的最小值.
爱思考的小思想到了一种方法:先用表示得:_____;
再把代入得到:______;
再利用配方法得到:(_____)+______;
根据完全平方式的非负性,就得到了的最小值是______.
请你补充完成小思的解答过程:
(2)根据小思的方法,请你求出:当时,求出的最小值.
(3)但是假如变成,求的最小值的时候小思的方法就不好用了,因此喜欢面对挑战的小喻同学想到了一种叫增量代换法:
设,,,,
∵,
∴,
则,
,
.
故的最小值是.
参考小喻的方法,当时,
求出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,则DB=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=+bx+c与一次函数y=kx﹣3的图象都经过x轴上的点A(4,0)和y轴上点C(0,﹣3).
(1)直接写出b,c,k的值,b= ,c= ,k= ;
(2)二次函数与x轴的另一个交点为B,点M(m,0)在线段AB上运动,过点M作x轴的垂线交直线AC于点D;交抛物线于点P.
①是否存在实数m,使△PCD为直角三角形.若存在、求出m的值;若不存在,请说明理由;
②当0<m<4时,过D作直线AC的垂线交x轴于点Q,求PD+DQ的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com