精英家教网 > 初中数学 > 题目详情
14.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
求证:DC⊥BE.

分析 根据等腰直角三角形的性质,可以得出△ABE≌△ACD,再由△ABE≌△ACD可以得出∠B=∠ACD-45°,进而得出∠DCB=90°,就可以得出结论.

解答 证明:∵△ABC与△AED均为等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°.
∴∠BAC+∠CAE=∠EAD+∠CAE.
即∠BAE=∠CAD,
在△ABE与△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△ACD,
∴∠ACD=∠ABE=45°,
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°,
∴DC⊥BE.

点评 本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.某人将其甲、乙两种股票卖出,其甲种股票卖价1200元,盈利20%,其乙种股票卖价也是1200元,但亏损10%.该人此次交易结果是盈利$\frac{200}{3}$元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=$5\sqrt{5}$,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB为⊙O的直径,$\widehat{CB}$=$\widehat{CD}$,CO的延长线交⊙O于点E,BA,ED的延长线交于点F.
(1)求证:$\widehat{AC}$=$\widehat{DE}$;
(2)若$\frac{AF}{DF}$=$\frac{2}{3}$,求$\frac{AE}{BE}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,AB=AC,点E在线段AC上,D在AB的延长线上,连接DE交BC于F,过E作EG⊥BC于G.
(1)下列两个关系式:①DB=EC,②DF=EF,请你选择一个做为条件,另一个做为结论构成一个正确的命题,并给予证明.
你选择的条件是①,结论是②.(只需填序号)
(2)在(1)的条件下,求证:FG=$\frac{1}{2}$BC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在矩形ABCD中,点O在对角线AC上,以OA的半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.若tan∠ACB=$\frac{{\sqrt{2}}}{2}$,BC=2,则⊙O的半径为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)问题背景:如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,直接写出EF,BE,DF之间的数量关系.
(2)探索延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是否仍然成立?说明理由;
(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°(即:∠EOF=70°),试求此时两舰艇之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”
操作步骤如下:
第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;
第二步:把第一步得到的数乘以25;
第三步:把第二步得到的数除以你想的这个数.
(1)若小明同学心里想的是数9,请帮他计算出最后结果:
(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0),请你帮小明完成这个验证过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,一个正方形被分成了九个大小相等的小方形,其中两个小正方形涂了颜色,涂色后的大正方形仍然是一个轴对称图形.
(1)请再对其中一个小正方形进行涂色,使有三个小正方形涂色后的大正方形还是轴对称图形(只要涂一个小正方形).
(2)满足(1)的小正方形总共有5个.

查看答案和解析>>

同步练习册答案