精英家教网 > 初中数学 > 题目详情
如图,P为⊙O外一点,PA、PB分别切⊙O于A、B, CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为(    )

A.5                    B.10                   C.15                  D.20
B

试题分析:切线长定理:定义从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角.
∵PA、PB切⊙O于A、B,
∴PA=PB=5;
同理,可得:EC=CA,DE=DB;
∴△PDC的周长=PC+CE+DE+DP=PC+AC+PD+DB=PA+PB=2PA=10.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一件轮廓为圆形的文物出土后只留下了一块残片,文物学家希望能把此件文物进行复原,因此把残片抽象成了一个弓形,如图所示,经过测量得到弓形高CD=米,∠CAD=30°,请你帮助文物学家完成下面两项工作:

(1)作出此文物轮廓圆心O的位置(尺规作图,保留作图痕迹,不写作法);
(2)求出弓形所在圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在△ABC中,AB=2,BC=2,AC=4,点O是AC的中点;回答下列问题:

(1)∠BAC=     °
(2)画出将△ABC绕点O旋转180°得到的△A1DC1(A→AB→D  C→C1),写出四边形ABCD的形状。
(3)尺规作图:在图中作出△ABC的高线AE(保留作图痕迹),并回答在四边形ABCD的边上(点A除外)是否存在点F,使∠EAC=∠EFC; 若存在点F,写出这样的点F一共有几个?并直接写出DF的长。若不存在这样的点F,请简要说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两圆半径分别为3㎝和7㎝,当圆心距d=10㎝时,两圆的位置关系为(   )
A.外离B.内切C.相交D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

边长为1cm的正六边形面积等于         cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在Rt△ABC中,∠C=90°,AB=5,BC=3,以AC所在的直线为轴旋转一周,所得圆锥的侧面积为( )
A.12πB.15πC.24πD.30π

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB、AC是⊙O切线,切点为B、C,连接BC,若△ABC是等边三角形,弦BC所对的圆周角为______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.

(1)求证:∠CDB=∠A;
(2)若BD=5,AD=12,求CD的长.

查看答案和解析>>

同步练习册答案