精英家教网 > 初中数学 > 题目详情

【题目】在如图所示的棱长为1的正方体中,A,B,C,D,E是正方体的顶点,M是棱CD的中点.动点P从点D出发,沿着D→A→B的路线在正方体的棱上运动,运动到点B停止运动.设点P运动的路程是x,y=PM+PE,则y关于x的函数图象大致为( )

A.
B.
C.
D.

【答案】C
【解析】解:当0≤x≤1时,
∵PM= = ,PE= =
∴y= +
当x=0时,y= + ;当x=1时,y= +1;
当侧面展开图中M、P、E三点共线时,y的值最小,最小值为 =
当1<x≤2时,
∵PM= ,PE= =
∴y= +
当x=2时,y= +
当侧面展开图中M、P、E三点共线时,y的值最小,最小值为 =
∵函数图象分为两段,∴A错误;
,即第一段的最小值<第二段的最小值,
+ +1< + ,即x为0时的函数值<x为1时的函数值<x为2时的函数值,
∴B、D错误;
故选C.
【考点精析】解答此题的关键在于理解函数的图象的相关知识,掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为(

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等边三角形.
(1)动手操作:如图1,点D在△ABC内,且∠BDC=150°,CD=1,BD= , 把△BCD绕着点C顺时针旋转,使点B旋转到点A,得到△AEC.

①依题意补全图1;(确认无误后,请用黑色水笔描黑)
②连接DE,则线段DE= , AD=
(2)应用拓展:如图2,点D在△ABC外,且CD=3,BD=4,AD=5,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了促进营业额不断增长,某大型超市决定购进甲、乙两种商品,已知甲种商品每件进价为150元,售价为168元;乙种商品每件进价为120元,售价为140元,该超市用42000元购进甲、乙两种商品,销售完后共获利5600元.
(1)该超市购进甲、乙两种商品各多少件?
(2)超市第二次以原价购进甲、乙两种商品共400件,且购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元,共有几种进货方案?写出利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B,C,D,E在同一直线上,并且BC=DE.若AB=CF,AD=EF.试探索AB与FC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:

(1)在这次调查中,一共抽取了多少名学生?通过计算补全条形统计图;
(2)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?
(3)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行驶的时间为t(h),两车之间的距离为s(km),图中的折线表示s与t之间的函数关系.根据图象提供的信息有下列说法:①甲、乙两地之间的距离为900km;②行驶4h两车相遇;③快车的速度为150km/h;④行驶6h两车相距400km;⑤相遇时慢车行驶了240km;⑥快车共行驶了6h.其中符合图象描述的说法有( )个.

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象相交于A,B两点,直线AB与x轴相交于点C,点B的坐标为(﹣6,m),线段OA=5,E为x轴正半轴上一点,且cos∠AOE=

(1)求反比例函数的解析式;
(2)求证:SAOC=2SBOC
(3)直接写出当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.

(1)求证:AB平分∠OAC;
(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.

查看答案和解析>>

同步练习册答案