精英家教网 > 初中数学 > 题目详情

【题目】如图.小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得.在进行如下操作时遇到了下面的几个问题,请你帮助解决.

(1)将的顶点移到矩形的顶点处,再将三角形绕点顺时针旋转使点落在边上,此时,恰好经过点(如图),请你求出的长度;

(2)在(1)的条件下,小明先将三角形的边和矩形边重合,然后将沿直线向右平移,至点与重合时停止.在平移过程中,设点平移的距离为,两纸片重叠部分面积为,求在平移的整个过程中,的函数关系式,并求当重叠部分面积为时,平移距离的值(如图).

【答案】(1);(2)分两种情况:①重叠部分,②;当时,

【解析】

(1)先在Rt△BCE中,利用勾股定理求得CE的长,即可得DE的长,然后在Rt△ADE中,利用勾股定理即可求得AE的长;然后根据等腰三角形的性质与互余求得

则可证,即,将各边数值代入即可求解;

(2)如图,分x≤4x>4两种情况,在Rt△EFG中,求得tan∠F的值,从而得到PB关于x的代数式,第一种情况根据梯形的面积公式整理即可得解;第二种情况根据y为△RPQ的面积加上矩形BCQP的面积即可得到;然后将y=10时分别代入求解即可.

(1)∵

,即

中,

(2)分两种情况:

时,如图相交于

的直角边

四边形是直角梯形

则重叠部分

时,如图相交于,与相交于PQ⊥CDQ,

∵PQ∥FG,

∴∠RPQ=∠F,即tan∠RPQ=tan∠F=

∴RQ=PQ=2,

当重叠部分面积为时,即分别代入两等式,

解得:(不合题意舍去)或

得出,

时,

时,

时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点PBC中点,两边PEPF分别交边ABAC于点EF,当∠EPF在△ABC所在平面内绕顶点P转动时(E不与AB重合),给出以下四个结论:PFA≌△PEBEF=APPEF是等腰直角三角形S四边形AEPFSABC,上述结论中始终正确有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半圆O的直径为ABD是半圆上的一个动点(不与点AB重合),连接BD并延长至点C,使CDBD,连接AC,过点DDEAC于点E

(1)请猜想DE与⊙O的位置关系,并说明理由;

(2)当AB=4,BAC=45°时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,8×5的正方形网格中,每个小正方形的边长均为1,ABC的三个顶点均在小正方形的顶点上.

(1)在图1中画ABD(D在小正方形的顶点上),使ABD的周长等于ABC的周长,且以A,B,C,D为顶点的四边形是轴对称图形;

(2)在图2中画ABE(E在小正方形的顶点上),使ABE的周长等于ABC的周长,且以A,B,C,E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,己知O为坐标原点,点A30),B0.4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α∠ABOβ

I )如图,当旋转后点D恰好落在AB边上时,求点D的坐标;

II)如图,当旋转后满足BC∥x轴时,求αβ之间的数量关系:

III)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx-2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数 y=2x2-8x+6.

(1)利用配方法写出这个函数图象的开口方向、对称轴、顶点坐标.

(2)在下面的平面直角坐标系中画图此函数图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其沿EF折叠,使点D与点B重合.

1)求证:DE=BF;

2)求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在线段AB上有一点C(点C不与AB重合且ACBC),分别以ACBC为边作正方形ACED和正方形BCFG,其中点F在边CE上,连接AG

1)如图1,若AC=7BC=5,则AG=______;

2)如图2,若点C是线段AB的三等分点,连接AEEG,求证:△AEG是直角三角形.

查看答案和解析>>

同步练习册答案