【题目】如图.小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得,.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
(1)将的顶点移到矩形的顶点处,再将三角形绕点顺时针旋转使点落在边上,此时,恰好经过点(如图),请你求出和的长度;
(2)在(1)的条件下,小明先将三角形的边和矩形边重合,然后将沿直线向右平移,至点与重合时停止.在平移过程中,设点平移的距离为,两纸片重叠部分面积为,求在平移的整个过程中,与的函数关系式,并求当重叠部分面积为时,平移距离的值(如图).
【答案】(1),;(2)分两种情况:①重叠部分,②;当时,或.
【解析】
(1)先在Rt△BCE中,利用勾股定理求得CE的长,即可得DE的长,然后在Rt△ADE中,利用勾股定理即可求得AE的长;然后根据等腰三角形的性质与互余求得,
则可证,即,将各边数值代入即可求解;
(2)如图,分x≤4与x>4两种情况,在Rt△EFG中,求得tan∠F的值,从而得到PB关于x的代数式,第一种情况根据梯形的面积公式整理即可得解;第二种情况根据y为△RPQ的面积加上矩形BCQP的面积即可得到;然后将y=10时分别代入求解即可.
(1)∵,,
∴,
∴,
∴;
∵,
∴,
又∵,,
∴,即
在和中,
,,
∴,
则,
∴;
(2)分两种情况:
①是≤时,如图,与相交于,
∵的直角边,,
∴,
∵,
∴,
∵,
∴四边形是直角梯形,
则重叠部分;
②是>时,如图,与相交于,与相交于,作PQ⊥CD与Q,
∵PQ∥FG,
∴∠RPQ=∠F,即tan∠RPQ=tan∠F=,
∴RQ=PQ=2,
∴,
当重叠部分面积为时,即分别代入两等式,
,
解得:(不合题意舍去)或,
得出,,
∴当时,,
当时,,
∴当时,或.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交边AB,AC于点E,F,当∠EPF在△ABC所在平面内绕顶点P转动时(点E不与A,B重合),给出以下四个结论:①△PFA≌△PEB②EF=AP③△PEF是等腰直角三角形④S四边形AEPFS△ABC,上述结论中始终正确有______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆O的直径为AB,D是半圆上的一个动点(不与点A,B重合),连接BD并延长至点C,使CD=BD,连接AC,过点D作DE⊥AC于点E.
(1)请猜想DE与⊙O的位置关系,并说明理由;
(2)当AB=4,∠BAC=45°时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.
(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A,B,C,D为顶点的四边形是轴对称图形;
(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A,B,C,E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0.4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.
(I )如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;
(II)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:
(III)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx-2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数 y=2x2-8x+6.
(1)利用配方法写出这个函数图象的开口方向、对称轴、顶点坐标.
(2)在下面的平面直角坐标系中画图此函数图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在线段AB上有一点C(点C不与A、B重合且AC>BC),分别以AC、BC为边作正方形ACED和正方形BCFG,其中点F在边CE上,连接AG.
(1)如图1,若AC=7,BC=5,则AG=______;
(2)如图2,若点C是线段AB的三等分点,连接AE、EG,求证:△AEG是直角三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com