【题目】如图,在△ABC内一点D,点C是AE上一点,AD交BE于点P,射线DC交BE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC
(1)求证:AB=AC;
(2)若AB=3,AE=5,求的值;
(3)若,=m,则=_______.
【答案】(1)证明见解析;(2)=;(3).
【解析】
(1)由∠PDB=∠PDC,根据邻补角的定义得到∠ADB=∠ADC,推出△ABD≌△ACD,由全等三角形的性质即可得到结论;
(2)先证明AP为∠BAE的平分线,然后,利用面积法可得到==;
(3)先求得的值,然后再依据条件求得=,设BP=3,PE=4,则EF=3m﹣4,PF=3m,从而可求得问题答案.
(1) 证明:∵∠PDB=∠PDC
∴∠ADB=∠ADC
在△ADB和△ADC中
,
∴△ADB≌△ADC.
∴AB=AC
(2)由△ADB≌△ADC可知,∠BAP=∠EAP,即AP平分∠BAE
∴P点到AB、AE的距离相等
∴==.
(3)∵,且AB=AC
∴.
∴.
∵=m,且BD=CD
∴
∴.
设BP=3,PE=4,则EF=3m﹣4,PF=3m,
∴=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:
某市自来水销售价格表
类别 | 月用水量 (立方米) | 供水价格 (元/立方米) | 污水处理费 (元/立方米) | |
居民生活用水 | 阶梯一 | 0~18(含18) | 1.90 | 1.00 |
阶梯二 | 18~25(含25) | 2.85 | ||
阶梯三 | 25以上 | 5.70 |
(注:居民生活用水水价=供水价格+污水处理费)
(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.
(2)4月份小明家用水量为20立方米,应付水费为:
18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)
预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.
(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.
(1)求证:PB=BC;
(2)试判断四边形BOCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:
(1)在图中作出路灯O的位置,并作OP⊥l于P.
(2)求出路灯O的高度,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假期间,瑞瑞打算参观上海世博会.她要从中国馆、澳大利亚馆、德国馆、英国馆、日本馆和瑞士馆中预约两个馆重点参观,想用抽签的方式来作决定,于是她做了分别写有以上馆名的六张卡片,从中任意抽取两张来确定预约的场馆,则他恰好抽中中国馆、澳大利亚馆的概率是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试探究∠BAD与∠CDE的数量关系;
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其它条件不变,试继续探究∠BAD与∠CDE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,,射线在这个角的内部,点、分别在的边、上,且,于点,于点.求证:;
(2)如图②,点、分别在的边、上,点、都在内部的射线上,、分别是、的外角.已知,且.求证:;
(3)如图③,在中,,.点在边上,,点、在线段上,.若的面积为15,求与的面积之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有分别标有汉字“最”、“美”、“丹”、“东”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“丹”的概率为 .
(2)甲从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,请用树状图或列表格的方法,求出甲取出的两个球上的汉字恰能组成“最美”或“丹东”的概率为P1;
(3)乙从中任取一球,不放回,再从中任取一球,记乙取出的两个球上的汉字恰能组成“最美”或“丹东”的概率P2,指出P1,P2的大小关系 .(请直接写出结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com