精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC内一点D,点CAE上一点,ADBE于点P,射线DCBE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC

(1)求证:ABAC

(2)AB3AE5,求的值;

(3)m,则_______.

【答案】(1)证明见解析;(2)(3).

【解析】

(1)由∠PDB=∠PDC,根据邻补角的定义得到∠ADB=∠ADC,推出△ABD≌△ACD,由全等三角形的性质即可得到结论;

(2)先证明AP为∠BAE的平分线,然后,利用面积法可得到=

(3)先求得的值,然后再依据条件求得,设BP3PE4,则EF3m4PF3m,从而可求得问题答案.

(1) 证明:∵∠PDB=∠PDC

∴∠ADB=∠ADC

在△ADB和△ADC

∴△ADB≌△ADC.

ABAC

(2)由△ADB≌△ADC可知,∠BAP=∠EAP,即AP平分∠BAE

P点到ABAE的距离相等

=.

(3),且ABAC

.

.

m,且BDCD

.

BP3PE4,则EF3m4PF3m

.

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:

某市自来水销售价格表

类别

月用水量

(立方米)

供水价格

(元/立方米)

污水处理费

(元/立方米)

居民生活用水

阶梯一

0~18(含18)

1.90

1.00

阶梯二

18~25(含25)

2.85

阶梯三

25以上

5.70

(注:居民生活用水水价=供水价格+污水处理费)

(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.

(2)4月份小明家用水量为20立方米,应付水费为:

18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)

预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.

(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,PB⊙O的切线,B为切点圆心OPC,∠P=30°,D为弧BC的中点.

(1)求证:PB=BC;

(2)试判断四边形BOCD的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:噢,我知道路灯有多高了!同学们,请你和小明一起解答这个问题:

(1)在图中作出路灯O的位置,并作OP⊥lP.

(2)求出路灯O的高度,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假期间,瑞瑞打算参观上海世博会.她要从中国馆、澳大利亚馆、德国馆、英国馆、日本馆和瑞士馆中预约两个馆重点参观,想用抽签的方式来作决定,于是她做了分别写有以上馆名的六张卡片,从中任意抽取两张来确定预约的场馆,则他恰好抽中中国馆、澳大利亚馆的概率是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图①,在ABC中,∠B=C=45°,点DBC边上,点EAC边上,且∠ADE=AED,连结DE.

(1)当∠BAD=60°时,求∠CDE的度数;

(2)当点DBC(点B、C除外)边上运动时,试探究∠BAD与∠CDE的数量关系;

(3)深入探究:如图②,若∠B=C,但∠C≠45°,其它条件不变,试继续探究∠BAD与∠CDE的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图①,,射线在这个角的内部,点分别在的边上,且于点于点.求证:

2)如图②,点分别在的边上,点都在内部的射线上,分别是的外角.已知,且.求证:

3)如图③,在中,.点在边上,,点在线段上,.若的面积为15,求的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字“最”、“”、“”、“东”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.

(1)若从中任取一个球,球上的汉字刚好是“丹”的概率为

(2)甲从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,请用树状图或列表格的方法,求出甲取出的两个球上的汉字恰能组成“最美”或“丹东”的概率为P1

(3)乙从中任取一球,不放回,再从中任取一球,记乙取出的两个球上的汉字恰能组成“最美”或“丹东”的概率P2,指出P1P2的大小关系 (请直接写出结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′CDED′C′CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE△EFC′是否全等?请说明理由.

查看答案和解析>>

同步练习册答案