精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+bx-2经过A(4,0),B(1,0)两点.
(1)求出抛物线的解析式;
(2)若P是抛物线上x轴上方的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

解:(1)将A(4,0),B(1,0)的坐标代入y=ax2+bx-2得

解得
故此抛物线的解析式为y=-x2+x-2.

(2)存在.
如图,设点P的横坐标为m,则P的纵坐标为-m2+m-2,
AM=4-m,PM=-m2+m-2,
又∵∠COA=∠PMA=90°,
∴①当==时,
△APM∽△ACO,
即4-m=2(-m2+m-2)
解得:m1=2,m2=4(舍去),
则P(2,1),
②当==时,
△APM∽△CAO,
即2(4-m)=-m2+m-2,
解得:m1=4,m2=5(均不合题意,舍去),
故符合条件的点P的坐标为P(2,1).

(3)如图,设D点的横坐标为t(0<t<4)D点的纵坐标为-t2+t-2,
过D作y轴的平行线交AC于E,
∵由题意可求得直线AC的解析式为y=x-2,
∴E点的坐标为(t,t-2),
∴DE=-t2+t-2-(t-2)=-t2+2t,
∴S△DAC=S△DCE+S△DEA=×(-t2+2t)×4=-t2+4t=-(t-2)2+4,
∴当t=2时,△DAC面积最大,∴D(2,1).
分析:(1)本题需先根据图象过A,B两点,即可得出解析式.
(2)本题首先判断出存在,首先设出横坐标和纵坐标,从而得出PA的解析式,再分三种情况进行讨论,当==时和当==时,得出△APM∽△ACO△APM∽△CAO,分别求出点P的坐标即可.
(3)本题需先根据题意设出D点的横坐标和D点的纵坐标,再过D作y轴的平行线交AC于E,再由题意可求得直线AC的解析式为,即可求出E点的坐标,从而得出结果即可.
点评:本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案