【题目】如图,在Rt△ABC中,CA=CB=2,M为CA的中点,在AB上存在一点P,连接PC、PM,则△PMC周长的最小值是( )
A.
B.
C. +1
D. +1
科目:初中数学 来源: 题型:
【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,假命题是( )
A.一组对边相等,另一组对边平行的四边形是平行四边形 B.三个角是直角的四边形是矩形
C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为判断命题“有三条边相等且一组对角相等的四边形是菱形”的真假,数学课上,老师给出菱形ABCD如图1,并作出了一个四边形ABC′D.具体作图过程如下:
如图2,在菱形ABCD中,
①连接BD,以点B为圆心,以BD的长为半径作圆弧,交CD于点P;
②分别以B、D为圆心,以BC、PC的长为半径作圆弧,两弧交于点C′.
③连接BC′、DC′,得四边形ABC′D.
依据上述作图过程,解决以下问题:
(1)求证:∠A=∠C′;AD=BC′.
(2)根据作图过程和(1)中的结论,说明命题“有三条边相等且有一组对顶角相等的四边形是菱形”是命题.(填写“真”或“假”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点A(0,9),B(24,9),C(22+3 ,0),半圆P的直径MN=6 ,且P,A重合时,点M,N在AB上,过点C的直线l与x轴的夹角α为60°.现点P从A出发以每秒1个单位长度的速度向B运动,与此同时,半圆P以每秒15°的速度绕点P顺时针旋转,直线l以每秒1个单位长度的速度沿x轴负方向运动(与x轴的交点为Q).当P、B重合时,半圆P与直线l停止运动.设点P的运动时间为t秒.
【发现】
(1)点N距x轴的最近距离为 , 此时,PA的长为;
(2)t=9时,MN所在直线是否经过原点?请说明理由.
(3)如图3,当点P在直线l时,求直线l分半圆P所成两部分的面积比.
(4)【拓展】如图4,当半圆P在直线左侧,且与直线l相切时,求点P的坐标.
(5)【探究】求出直线l与半圆P有公共点的时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A1 (1,1),A2 (2,4),A3 (3,9),A4 (4,16),…,用你发现的规律确定点A10的坐标是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com