精英家教网 > 初中数学 > 题目详情

【题目】如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)

【答案】解:在Rt△ABC中: ∵∠CAB=90°,BC=13米,AC=5米,
∴AB= =12(米),
∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,
∴CD=13﹣0.5×10=8(米),
∴AD= = = (米),
∴BD=AB﹣AD=12﹣ (米),
答:船向岸边移动了(12﹣ )米
【解析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用AB=AD可得BD长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个角的补角是这个角余角的3倍,则这个角是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据8,3,8,6,7,8,7的众数和中位数分别是(
A.8,6
B.7,6
C.7,8
D.8,7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是直角三角形,ACB=90°.

(1)尺规作图:作C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母

(2)在你按(1)中要求所作的图中,若BC=3,A=30°,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知射线CD∥OA,点E、点F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC.

(1)若∠O=∠ADC,判断AD与OB的位置关系,证明你的结论.
(2)若∠O=∠ADC=60°,求∠ACE的度数.
(3)在(2)的条件下左右平行移动AD,∠OEC和∠CAD存在怎样的数量关系?请直接写出结果(不需写证明过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)如图(1),将一副直角三角板的直角顶点C叠放在一起.

①填空:∠ACE∠BCD(选填“<”或“>”或“=”);
②若∠DCE=25°,求∠ACB的度数;
③猜想∠ACB与∠DCE的数量关系,并说明理由.
(2)若改变(1)中一个三角板的位置,如图(2)所示,则上述第③题的结论是否仍然成立?(不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了(  )

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线经过点A(2,﹣3)和B(4,5).

(1)求抛物线的表达式及顶点坐标;

(2)将抛物线沿x轴翻折,得到图象G1,求图象G1的表达式;

(3)设B点关于对称轴的对称点为E,抛物线G2(a≠0)与线段EB恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)
(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

查看答案和解析>>

同步练习册答案