精英家教网 > 初中数学 > 题目详情
精英家教网已知如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B,化简
(a+c)2
+
(c-b)2
的结果为①c,②b,③b-a,④a-b+2c,其中正确的有(  )
A、一个B、两个C、三个D、四个
分析:先把A点坐标代入抛物线的解析式可得a-b+c=0,再根据抛物线的开口向下可得a<0,由抛物线的图象可知对称轴在x轴的正半轴可知-
b
2a
>0,抛物线与y轴相交于y轴的正半轴,所以c>0,根据此条件即可判断出a+c及c-b的符号,再根据二次根式的性质即可进行解答.
解答:解:∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=0,即a+c=b,
∵抛物线的开口向下,
∴a<0,
∵对称轴在x轴的正半轴可知-
b
2a
>0,
∴b>0,
∵抛物线与y轴相交于y轴的正半轴,
∴c>0,
∴a+c=b>0,c>b,
∴①原式=b+(c-b)=c,故①正确,

④原式=a+c+c-b=a-b+2c,故④正确.
③∵a-b+c=0
∴原式=a-b+2c=a-b+c+c=0+c=c,故③正确.
故选C.
点评:本题考查的是抛物线与x轴的交点,涉及到抛物线的图象与系数的关系,抛物线的对称轴方程等相关知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标;
(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=ax2+bx-a的图象与x轴交于A、B两点,点A在点B的左边,顶点坐标为C(0,-4),直精英家教网线x=m(m>1)与x轴交于点D.
(1)求抛物线的解析式;
(2)在直线x=m(m>1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,试问:抛物线y=ax2+bx-a是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,抛物线y=x2-x-1与y轴交于C点,以原点O为圆心,以OC为半径作⊙O,交x轴于A、B两点,交y轴于另一点D.设点P为抛物线y=x2-x-1上的一点,作PM⊥x轴于点M,求使△PMB∽△ADB时的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.
(1)请求出点A坐标和⊙P的半径;
(2)请确定抛物线的解析式;
(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).

查看答案和解析>>

同步练习册答案