【题目】给出下列图形:①线段;②平行四边形;③圆;④长方形;⑤等边三角形.其中,旋转对称图形是__________(只填序号).
科目:初中数学 来源: 题型:
【题目】如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题12分)抛物线经过点A(-4,0),B(2,0)且与轴交于点C.
(1)求抛物线的解析式;
(2)如图1,P为线段AC上一点,过点P作轴平行线,交抛物线于点D,当△ADC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴子F点,M、N分别是轴和线段EF上的动点,设M的坐标为(m,0),若∠MNC=90°,请指出实数m的变化范围,并说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若两个二次函数图像的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图像经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当
2≤x≤3时,y2的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com