精英家教网 > 初中数学 > 题目详情
已知:在△ABC中,AB=AC,∠A=36°,AB交⊙O于G、H两点,AC交⊙O于F、E两点,GH=FE,BH=CE.
(1)如图1,求证:AO垂直平分BC;
(2)如图2,BF与CG交于点M,连接AM,并延长分别交GF、BC于点N、D,若BH=1,GH=3,GA=2,求
MN
MD
的值;
(3)在图3中,若⊙O与底边BC相切于中点D,点G、F分别为AB、AC的中点,请你找出与EF相等的线段,并加以证明.
(1)证明:作OP⊥EF于P,OQ⊥GH于Q,(1分)
∵EF=GH(2分)
∴OP=OQ
∴OA平分∠BAC(3分)
∵AB=AC
∴AO垂直平分BC;(4分)

(2)∵AB=AC,BH=CE,HG=EF
∴AG=AF(5分)
AG
AB
=
AF
AC

∴GFBC(6分)
MN
MD
=
GM
MC
=
GF
BC
=
AG
AB
=
2
1+3+2
=
1
3


(3)EF=ED=DH=HG=GF=BD=DC.(7分)(此处与最后一步为同一个得分点)
证明:∵G、F为AB、AC的中点,D是BC的中点,(8分)
∴GF=
1
2
BC=BD=DC
连接DF,(9分)
∴DFAB
∴∠1=∠A=36°,∠CDF=∠B=72°
∵BC切⊙O于D
∴∠1=∠2=36°(10分)
∴∠3=36°,∠DEC=∠C=72°(11分)
∴DC=DE=EF
同理:HG=DH=BD,而HG=EF
∴EF=ED=DH=HG=GF=BD=DC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,弦AB=10,CD=8,弦AB和CD相交于点E,连接AD和BC.
(1)求证:△AED△CEB;
(2)当弦AB不动,弦CD移动时,是否存在一个位置使CE=ED?若存在,请求出BC:AD的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线AB经过⊙O的圆心,与⊙O相交于A、B两点,点C在⊙O上,且∠AOC=30度.点E是直线AB上的一个动点(与点O不重合),直线EC交⊙O于D,则使DE=DO的点E共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在梯形ABCD中,ABDC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK.
求证:∠DMA=∠CKB.(第二届袓冲之杯初中竞赛)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦ADOC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,如图,AB是⊙O的直径,直线EF切⊙O于点B,C和D是⊙O上的点,且∠CBE=40°,AD=CD,则∠BCD的度数是(  )
A.110°B.115°C.120°D.130°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是(  )
A.80°B.110°C.120°D.140°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F.
(1)求证:DF是⊙O的切线;
(2)连接DE,若AB=AC=13,BC=10,求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙B的半径r=1,PA、PO是⊙B的切线,A、O是切点.过点A作弦ACPO,连接CO、AO(如图1).
(1)问△PAO与△OAC有什么关系?证明你的结论;
(2)把整个图形放在直角坐标系中(如图2),使OP与x轴重合,B点在y轴上.
设P(t,0),P点在x轴的正半轴上运动时,四边形PACO的形状随之变化,当这图形满足什么条件时,四边形PACO是菱形?说明理由.

查看答案和解析>>

同步练习册答案