精英家教网 > 初中数学 > 题目详情

【题目】袋中有个红球,个白球,个黑球,它们除颜色外都相同,小明从中随机摸出一球.下列说法正确的是(

A. 一定是红球 B. 是红球或白球或黑球的可能性相同

C. 摸到白球的可能性比摸到黑球的可能性大 D. 有可能是红球或白球或黑球

【答案】D

【解析】

由于袋中有50个红球,1个白球,1个黑球,它们除颜色外都相同,小明从中随机摸出一球,那么红球的概率最大,白球和黑球的概率一样,小于红球,由此即可判定选择答案.

∵袋中有50个红球,1个白球,1个黑球,它们除颜色外都相同,小明从中随机摸出一球可能是红球,故选项A错误;根据题意知道是红球的概率最大,故选项B错误;根据题意知道摸到白球的可能性与摸到黑球的可能性一样,故选项C错误;根据题意知道有可能是红球或白球或黑球,故选项D正确,故选项D为正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线AC、BD相交于点O,AEBDE,若∠OAE=24°,则∠BAE的度数是(  )

A. 24° B. 33° C. 42° D. 43°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC 中,AB=AC,点D 在底边BC 上,AE=AD,连接 DE

1)如图①,已知∠BAC=90°,∠BAD=60°,求 CDE 的度数;

2)如图①,已知∠BAC=90°,当点D 在线段BC(点BC 除外)上运动时,试探究∠BAD CDE 的数量关系;

3)如图②,若 BAC90°,试探究∠BAD CDE 的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为   

2)连接ADCD,求⊙D的半径及扇形DAC的圆心角度数;

3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图(1),在平面直角坐标系中,点A、点B分別在x轴、y轴的正半轴上,点C在第一象限,∠ACB90°ACBC,点A坐标为(m0),点C横坐标为n,且m2+n22m8n+170

1)分別求出点A、点B、点C的坐标;

2)如图(2),点D为边AB中点,以点D为顶点的直角∠EDF两边分别交边BCE,交边ACF,①求证:DEDF;②求证:S四边形DECFSABC

3)在坐标平面内有点G(点G不与点A重合),使得BCG是以BC为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距40km,甲、乙两人沿同一路线从A地到B地,甲骑自行车先出发,1.5h后乙乘坐公共汽车出发,两人匀速行驶的路程与时间的关系如图所示.

1)求甲、乙两人的速度;

2)若乙到达B地后,立即以原速返回A地.

①在图中画出乙返程中距离A地的路程ykm)与时间xh)的函数图象,并求出此时yx的函数表达式;

②求甲在离B地多远处与返程中的乙相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2-7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x-3

1)求ab的值;(2)请计算这道题的正确结果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P2018次碰到长方形的边时,点P的坐标为______

【答案】

【解析】

根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.

解:如图所示:经过6次反弹后动点回到出发点

当点P2018次碰到矩形的边时为第337个循环组的第2次反弹,

P的坐标为

故答案为:

【点睛】

此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.

型】填空
束】
15

【题目】为了保护环境,某公交公司决定购买AB两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2A型车比购买3B型车少60万元.

请求出ab

若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

同步练习册答案