精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)

(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

【答案】
(1)

解:把B、C两点坐标代入抛物线解析式可得 ,解得

∴抛物线解析式为y=x2﹣2x﹣3


(2)

解:如图1,连接BC,过P作y轴的平行线,交BC于点M,交x轴于点H,

在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,

∴A点坐标为(﹣1,0),

∴AB=3﹣(﹣1)=4,且OC=3,

∴S△ABC= ABOC= ×4×3=6,

∵B(3,0),C(0,﹣3),

∴直线BC解析式为y=x﹣3,

设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),

∵P点在第四限,

∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,

∴S△PBC= PMOH+ PMHB= PM(OH+HB)= PMOB= PM,

∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,

∵PM=﹣x2+3x=﹣(x﹣ 2+

∴当x= 时,PMmax= ,则S△PBC= × =

此时P点坐标为( ,﹣ ),S四边形ABPC=S△ABC+S△PBC=6+ =

即当P点坐标为( ,﹣ )时,四边形ABPC的面积最大,最大面积为


(3)

解:①当点Q在x轴下方时,如图2,设直线m交y轴于点N,交直线l于点G,

则∠AGB=∠GNC+∠GCN,

当△AGB和△NGC相似时,必有∠AGB=∠CGB,

又∠AGB+∠CGB=180°,

∴∠AGB=∠CGB=90°,

∴∠ACO=∠OBN,

在Rt△AOC和Rt△NOB中

∴Rt△AOC≌Rt△NOB(ASA),

∴ON=OA=1,

∴N点坐标为(0,﹣1),

设直线m解析式为y=kx+d,把B、N两点坐标代入可得 ,解得

∴直线m解析式为y= x﹣1;

②当点Q在x轴上方时,此时直线m与①中的直线m关于x轴对称,

∴解析式为y=﹣ x+1;

综上可知存在满足条件的直线m,其解析式为y= x﹣1或y=﹣ x+1


【解析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM//y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD,ABDC,B=55°,1=85°,2=40°

(1)求∠D的度数;

(2)求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线ACBD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是(  )

A. OA=OCADBC B. ABC=ADCADBC

C. AB=DCAD=BC D. ABD=ADBBAO=DCO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.

(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.
(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE= 时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P的三顶点的距离之和的值为最小?

问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:

问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求的度数;

问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+ )海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
其中正确的结论有( )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,然后解答后面的问题.

(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.

(2)性质探究:请完成凹四边形一个性质的证明.

已知:如图2,四边形ABCD是凹四边形.

求证:∠BCD=B+∠A+∠D.

(3)性质应用:

如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,AEC=102°,则∠B=_____°.

查看答案和解析>>

同步练习册答案