精英家教网 > 初中数学 > 题目详情
(2013•江宁区二模)已知⊙O1的半径是2cm,⊙O2的半径是3cm,若这两圆相交,则圆心距d(cm)的取值范围是(  )
分析:根据数量关系与两圆位置关系的对应情况求得,两圆相交,则R-r<d<R+r.
解答:解:∵半径分别为2cm和3cm的两圆相交,
∴圆心距d的取值范围是3-2<d<3+2,
即1<d<5.
故选D.
点评:本题考查了由数量关系来判断两圆位置关系的方法.外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.
(P表示圆心距,R,r分别表示两圆的半径).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•江宁区二模)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)如图,若将木条a绕点O旋转后与木条b平行,则旋转角的最小值为
15
15
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),将△ABC绕点A逆时针旋转90°,则在△ABC扫过的区域中(不含边界上的点),到点O的距离为无理数的格点的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)如图1,在平面直角坐标系中,二次函数y=-x2-2x+2的图象与y轴交于点C,以OC为一边向左侧作正方形OCBA.

(1)判断点B是否在二次函数y=-x2-2x+2的图象上?并说明理由;
(2)用配方法求二次函数y=-x2-2x+2的图象的对称轴;
(3)如图2,把正方形OCBA绕点O顺时针旋转α后得到正方形A1B1C1O(0°<α<90°).
①当tanα﹦
12
时,二次函数y=-x2-2x+2的图象的对称轴上是否存在一点P,使△PB1C1为直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
②在二次函数y=-x2-2x+2的图象的对称轴上是否存在一点P,使△PB1C1为等腰直角三角形?若存在,请直接写出此时tanα的值;若不存在,请说明理由﹒

查看答案和解析>>

同步练习册答案