【题目】如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=15°,∠B=40°.
(1)求∠C的度数.
(2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含α,β的式子表示∠C的度数.
【答案】(1)70°;(2)∠C=β+2α.
【解析】
(1)根据三角形的内角和定理求出∠BAD,求出∠BAE,根据角平分线的定义求出∠BAC,即可求出答案;
(2)根据三角形的内角和定理求出∠BAD,求出∠BAE,根据角平分线的定义求出∠BAC,即可求出答案.
(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°,
∵∠B=40°,
∴∠BAD=90°-40°=50°,
∵∠EAD=15°,
∴∠BAE=50°-15°=35°,
∵AE平分∠BAC,
∴∠CAE=∠BAE=∠BAC=35°,
∴∠BAC=70°,
∴∠C=180°-∠BAC-∠B=180°-70°-40°=70°;
(2)∵AD⊥BC,
∴∠ADC=∠ADB=90°,
∵∠B=β,
∴∠BAD=90°-β,
∵∠EAD=α,
∴∠BAE=90°-β-α,
∵AE平分∠BAC,
∴∠CAE=∠BAE=∠BAC=90°-β-α,
∴∠BAC=180°-2β-2α,
∴∠C=180°-∠BAC-∠B=180°-(180°-2β-2α)-β=β+2α.
科目:初中数学 来源: 题型:
【题目】(8分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
(1)求∠DOA的度数;
(2)求证:直线ED与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)3+()+()+();
(2)25.7+(-7.3)+(-13.7)+7.3;
(3)(-2.125)+()+()+(-3.2);
(4)(-0.8)+6.4+(-9.2)+3.6+(-1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一根长2a的木棍,斜靠在与地面垂直的墙上,设木棍的中点为若木棍A端沿墙下滑,且B端沿地面向右滑行.
请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.
在木棍滑动的过程中,当滑动到什么位置时,的面积最大?简述理由,并求出面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,BE=1,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则EC的长为( )
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划组织师生共435人参加一次大型公益活动,如果租用5辆小客车和6辆大客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多12个.
(1) 求每辆小客车和每辆大客车的乘客座位数;
(2) 由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;
②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE
求证:(1)△ABC是等腰三角形
(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com