精英家教网 > 初中数学 > 题目详情

【题目】如图所示,一根长2a的木棍,斜靠在与地面垂直的墙上,设木棍的中点为若木棍A端沿墙下滑,且B端沿地面向右滑行.

请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.

在木棍滑动的过程中,当滑动到什么位置时,的面积最大?简述理由,并求出面积的最大值.

【答案】(1)斜边上的中线OP不变;(2)当的斜边上的高h等于中线OP时,为等腰直角三角形时,面积最大,理由见解析

【解析】试题分析:(1)木棍滑动的过程中,点P到点O的距离不会变化.根据在直角三角形中,斜边上的中线等于斜边的一半即可判断;
(2)当△AOB的斜边上的高h等于中线OP时,△AOB的面积最大,就可以求出.

试题解析:(1)不变。

理由:在直角三角形中,斜边上的中线等于斜边的一半,因为斜边AB不变,所以斜边上的中线OP不变。
(2)当△AOB的斜边上的高h等于中线OP时,△AOB的面积最大。

如图,若hOP不相等,则总有h<OP,
故根据三角形面积公式,有hOP相等时△AOB的面积最大
此时,S△AOB=AB·h=×2a·a=a2,所以△AOB的最大面积为a2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为αα90°),若∠1=110°,则∠α=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】o的半径是13,弦ABCD,AB=24,CD=10,则AB与CD的距离是( )

A.7 B.17 C.7或17 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BGAE于点G,延长BGAD于点H.在下列结论中:

AH=DF; ②∠AEF=45°; ③S四边形EFHG=SDEF+SAGH

其中正确的结论有_____________________.(填正确的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.

(1)求证:AC平分∠DAB;

(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;

(3)如图②,连接OD交AC于点G,若,求sinE的值.

【答案】(1)证明见解析;(2)CF=;(3) sinE=.

【解析】分析:(1)连接OC,由平行线的判定定理、性质以及三角形中的等角对等边的原理即可求证。(2)由(1)中结论,利用特殊角的三角函数值可求出∠E=30CF的长度。(3)连接OC,即可证得△OCG∽△DAG,△OCE∽△DAE,根据相似三角形的对应边成比例,可得EOAO的比例关系,又因为OC=OA,所以在RT△OCE中由三角函数的定义即可求解。

本题解析:(1)连接OC,如图①.∵OC切半圆O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.

(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.

∴在Rt△OCF中,CF=OC·sin60°=2×.

(3)连接OC,如图②.∵CO∥AD,∴△CGO∽△AGD.∴.不妨设CO=AO=3k,则AD=4k.又△COE∽△DAE,∴.∴EO=9k.在Rt△COE中,sinE=.

型】解答
束】
25

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,AE是∠BAC的平分线,∠EAD=15°,∠B=40°

1)求∠C的度数.

2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含αβ的式子表示∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进45A商品和20B商品共用了800元,购进60A商品和35B商品共用了1100元.

1AB两种商品的单价分别是多少元?

2)已知该商店购进B商品的件数比购进A商品件数的2倍少4件,如果需要购进AB两种商品的总件数不少于32件,且该商店购进AB两种商品的总费用不超过296元,那么该商店有几种购进方案?并写出所有可能的购进方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ADBC,AD=6cm,CD=8cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为

1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:

(1)当t为何值时,PEAB

(2)是否存在某一时刻t,使SDEQ=?若存在,求出此时t的值;若不存在,说明理由.

(3)如图2连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为___.

查看答案和解析>>

同步练习册答案