精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)求证:DC=AB.

【答案】
(1)解:∵AB=AC,

∴∠B=∠C=30°,

∵∠C+∠BAC+∠B=180°,

∴∠BAC=180°﹣30°﹣30°=120°,

∵∠DAB=45°,

∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°


(2)证明:∵∠DAB=45°,

∴∠ADC=∠B+∠DAB=75°,

∴∠DAC=∠ADC,

∴DC=AC,

∴DC=AB


【解析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.
【考点精析】关于本题考查的等腰三角形的性质,需要了解等腰三角形的两个底角相等(简称:等边对等角)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.

猜想结论:(要求用文字语言叙述) 写出证明过程(先画出图形,写出已知、求证).

(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?

(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;

(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x22x30的一次项系数是(  )

A.2B.2C.3D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下表

我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:

(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为

(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,求x,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=6cm,DE=4cm,求BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程2x2+x-4=0的解的情况是( )

A.有两个不相等的实数根

B.没有实数根

C.有两个相等的实数根

D.有一个实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:①直径是弦;②垂直于半径的直线是这个圆的切线;③圆只有一个外切三角形;④三点确定一个圆,其中假命题的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于函数y=﹣2x+1,下列结论正确的是( )

A. 图象经过点(﹣2,1) B. yx的增大而增大

C. 图象不经过第三象限 D. 图象不经过第二象限

查看答案和解析>>

同步练习册答案