精英家教网 > 初中数学 > 题目详情
19.若方程x2-2x-2014=0的两根为a,b,则a2-3a-b的值为2012.

分析 首先根据方程x2-2x-2014=0的两根为a,b,求出a+b=2,a2-2a=2014,然后整体代值计算.

解答 解:∵方程x2-2x-2014=0的两根为a,b,
∴a+b=2,a2-2a=2014,
∴a2-3a-b=(a2-2a)-(a+b)=2014-2=2012,
故答案为2012.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.也考查了一元二次方程的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.某市为鼓励市民节约用水和加强对节水的管理,制定了以下每月每户用水的收费标准:
①用水量不超过8立方米时,每立方米收费0.8元,并加收每立方米0.2元的污水处理费;
②用水量超过8立方米时,在①的基础上,超过8立方米的部分,每立方米收费1.6元,并加收每立方米0.4元的污水处理费.
设某户一个月的用水量为x立方米,应交水费为y元
(1)试分析对①②两种情况,求出y关于x的函数解析式,并写出函数的定义域;
(2)如果该户一个月的水费为20元,求该户这一个月的用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知y1=2x-3,y2=-x+3,当x取何值时,
(1)y1≤y2;                 
(2)y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知关于x的方程x2-4x+3=0的两个根是m和n,则mn=3,m+n=4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2003次,点P依次落在点P1、P2、P3、P4…Pn的位置,则P2003的横坐标x2003=2002.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知在△ABC中,AB=15,AC=20,tanA=$\frac{1}{2}$,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.
(1)求⊙P的半径;
(2)当AP=$6\sqrt{5}$时,试探究△APM与△PCN是否相似,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一条宽阔的街道的两侧有两个建筑物AD和BC,王洋在街道的两建筑物之间测AD的仰角为45°,建筑物BC的仰角为57°,已知两建筑物的高度之和为60米,两街道宽AB=50米,求建筑物BC的高度.(sin57°≈0.83,cos57°≈0.54,tan57≈1.5)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在△ABC中,∠BAC=90°,∠C=30°,BC=6,P为直线AC上的一点(不与A、C重合),满足∠APB=60°,则CP=4$\sqrt{3}$或2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案