精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,DE分别是ABBC边上的中点,过点CCFAB,交DE的延长线于F点,连接CDBF

1)求证:△BDE≌△CFE

2)△ABC满足什么条件时,四边形BDCF是矩形?

【答案】(1)详见解析;(2)BCAC时,四边形BDCF是矩形,理由详见解析

【解析】

1)由平行线的性质得出∠DBE=∠CFE,由中点的定义得出BECE,由ASA证明△BDE≌△CFE即可;

2)先证明DE是△ABC的中位线,得出DEAC,证出四边形BDCF是平行四边形,得出ADCF,证出CFBD,得出四边形BDCF是平行四边形;再由等腰三角形的性质得出CDAB,即可得出结论.

1)证明:∵CFAB

∴∠DBE=∠CFE

EBC的中点,

BECE

在△BDE和△CFE中,

∴△BDE≌△CFEASA);

2)解:当BCAC时,四边形BDCF是矩形,理由如下:

DE分别是ABBC的中点

DE是△ABC的中位线,

DEAC,又AFBC

∴四边形BDCF是平行四边形,

ADCF

BDAD

CFBD,又CFBD

∴四边形BDCF是平行四边形;

BCACBDAD

CDAB,即∠BDC90°,

∴平行四边形BDCF是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:

如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.

解决问题:

(1)如图1,A=B=DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;

拓展探究:

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究ABBC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图□ABCDEFGH分别在边ABBCCDDAAECGAHCF

(1)求证:△AEH≌△CGF

(2)EG平分∠HEF求证四边形EFGH是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.

(1)求这个梯子顶端A距地面有多高;

(2)如果梯子的顶端A下滑4 m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4 m吗?为什么?

(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(11分)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.

(1)求抛物线对应的函数表达式;

(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断AEF的形状,并说明理由;

(4)当E是直线y=﹣x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

1)小明总共剪开了   条棱.

2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上补 全.(请在备用图中画出所有可能)

3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的4倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是720cm,求这个长方体纸盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空并解答:

规定:a2a×aa3a×a×aana×a×…×an a

(1)(2×3)2 ,22×32 ,你发现(2× 3)2 的值与 22×32 的值

(2)(2×3)3 ,23×33 你发现(2×3)3 的值与 23×33 的值

由此我们可以猜想:(a×b2 a2×b2,(a×b3 a3×b3,…(a×bn an×bn.

(3)利用(2)题结论计算(﹣2)2018×(﹣2019 的值.

查看答案和解析>>

同步练习册答案