【题目】如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着地边BC修一座底面是矩形DEFG的大楼,D、G分别在AB、AC的边上,问当这个矩形面积最大时,它的长与宽各是多少米?面积最大为多少平方米?
【答案】长与宽各是50米和40米,面积最大为2000平方米.
【解析】试题分析:
设DG的长为x,矩形DEFG面积为y,易证△ADG∽△ABC,由此可得,从而可用含“x”的式子表达出AP,进一步可表达出DE的长,最后由y=DG·DE即可求得y与x间的函数关系式,把所得函数关系式配方即可得到所求答案.
试题解析:
设DG的长为x,矩形DEFG面积为y,
∵矩形DEFG的边EF在△ABC的边BC上,
∴DG∥BC,
∴△ADG∽△ABC
∵AH⊥BC,
∴AP⊥DG
∴,
∴,
∴AP=x,DE=PH=80﹣x,
∴y=﹣+80x(0<x<100);
∵y=﹣+80x=﹣(x2﹣100x+2500)+2000=﹣(x﹣50)2+2000;
∴当DG=x=50米,DE=40米时,矩形DEFG面积最大为2000平方米.
答:长与宽各是50米和40米,面积最大为2000平方米.
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=x2+2x﹣3与x轴相交于A,B两点,与y轴交于点C,D为顶点.
(1)求直线AC的解析式和顶点D的坐标;
(2)已知E(0, ),点P是直线AC下方的抛物线上一动点,作PR⊥AC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接A、M、N、P构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;
(3)如图2,过点D作DF∥y轴交直线AC于点F,连接AD,Q点是线段AD上一动点,将△DFQ沿直线FQ折叠至△D1FQ,是否存在点Q使得△D1FQ与△AFQ重叠部分的图形是直角三角形?若存在,请求出AQ的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )
A. B. C. 1 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:菱形 ABCD,点 E 在线段 BC 上,连接 DE,点 F 在线段 AB 上,连接 CF、DF, CF 与 DE 交于点 G,将菱形 ABCD 沿 DF 翻折,点 A 恰好落在点 G 上.
(1)求证:CD=CF;
(2)设∠CED= x,∠DCF= y,求 y 与 x 的函数关系式;(不要求写出自变量的取值范围)
(3)在(2)的条件下,当 x=45°时,以 CD 为底边作等腰△CDK,顶角顶点 K 在菱形 ABCD的内部,连接 GK,若 GK∥CD,CD=4 时,求线段 KG 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为3.
(1)写出y关于x的函数关系式 ;x的取值范围是 .
(2)列表,得
x | … | 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
| … |
在给出的坐标系中描点并连线;
(3)如果A(x1,y1),B(x2,y2)是图象上的两个点,且x1>x2>0,试判断y1,y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sin B=,AD=1.
(1)求BC的长;
(2)求tan ∠DAE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(-2,n)在抛物线y=x2+bx+c上.
(1)若b=1,c=3,求n的值;
(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是-4,请画出点P(x-1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年11月11日,张杰参加了某网点的“翻牌抽奖”活动.如图所示,4张牌上分别写有对应奖品的价值为10元,15元,20元和“谢谢惠顾”的字样.
⑴如果随机翻1张牌,那么抽中有奖的概率为 ,抽中15元及以上奖品的概率为 .
⑵如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,用画树状图或列表法列出抽奖的所有等可能性情况,并求出获奖品总值不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆、、,组成一条平滑的曲线,点从原点出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点的坐标是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com