精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.

【答案】
(1)解:如图所示:


(2)证明:∵BE平分∠ABC,

∴∠ABE=∠FBE,

∵∠EBF=∠AEB,

∴∠ABE=∠AEB,

∴AB=AE,

∵AO⊥BE,

∴BO=EO,

∵在△ABO和△FBO中,

∴△ABO≌△FBO(ASA),

∴AO=FO,

∵AF⊥BE,BO=EO,AO=FO,

∴四边形ABFE为菱形.


【解析】(1)根据角平分线的作法作出∠ABC的平分线即可;(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点FBEC在同一直线上,并且BF=CE∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.

提供的三个条件是:①AB=DE②AC=DF③AC∥DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).求:
(1)反比例函数和一次函数的解析式;
(2)写出当反比例函数的值大于一次函数的值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、2、3、4的外角的角度和为220°,则∠BOD的度数是(  )

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的平分线与∠OBA的外角平分线交于点C,试猜想:随着点A,B的移动,∠ACB的大小是否发生变化,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中放置一菱形OABC,已知ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000

(1) 求每台甲型手机和乙型手机的利润

(2) 专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y

直接写出y关于x的函数关系式_______________,x的取值范围是_______________

该商店如何进货才能使销售总利润最大?说明原因

(3) 专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.

(1)试判断四边形AEBO的形状,并说明你的理由;

(2)求证:EO=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a、b、c满足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

查看答案和解析>>

同步练习册答案